
RETAILERS PLEASE DISPLAY
UNTIL JUNE 30, 2007

 JDJ.SYS-CON.COM VOL.12 ISSUE:4

No. 1 i-Technology Magazine in the World

JDJ.SYS-CON.COM VOL.12 ISSUE:4

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

COM
ING TO NEW

 YORK CITY! SEE PAGES 29 and 31

USING THE JAVA PERSISTENCE API (JPA) WITH SPRING 2.0 PAGE 18

www.SOAWorld2007.com

3-DAY EVENT!

PLUS

PLUS...
Bridging the Gap Between Open Source
and Commercial Applications

Not Invented Here:
Reject, Repulse, and Reinvent

JDJ.SYS-CON.com

he phrase “not invented
here,” or NIH, when applied
to technology, describes a
resistance by a group to use a

perfectly valid solution to a problem
they’re encountering because they’d
rather build the answer from scratch
than adopt something existing that
already does the job. Assuming that
there are no legal or licensing issues
to stop the already-built technology
from being included, the reasons
behind the recalcitrance to its us-
age usually boil
down to human
nature.
 Software engi-
neers are inven-
tors, and inven-
tors like to build
things from first
principles. Arriv-
ing at their door
with a complet-
ed solution takes
the wind out of
their sails; it un-
dermines their relevance and forces
them to examine something built
by people who are possibly smarter
than themselves. Most scientists
revel in such group sharing of knowl-
edge; as Sir Isaac Newton acknowl-
edged, “If I have seen further it is by
standing on ye shoulders of Giants.”
Only by recognizing, embracing, and
then using the solution as a platform
to further advance can science move
forward. At a recent presentation
given by some NASA engineers who
base their command and control
systems on the Eclipse Rich Client
Platform, they described the deci-
sion to do this by drawing analogies
to rockets. As developers, their job

at NASA is to work on the payload of
the rocket and perfect the portion
that rides on the top to boldly go and
do novel and exciting stuff in space.
The lower part that propels them
into orbit is basically a commodity to
them and bought off the shelf from
Boeing and other big companies
whose expertise is in moving big
and heavy things efficiently through
the atmosphere. This embracing of
Newton’s wisdom to pre-requisite
technology such as Java and the

Eclipse RCP is not
rocket science to
mature and sen-
sible developers.
 Leaving the
world of space
exploration for a
moment, one of
Java’s problems
since its inception
has been the model
by which classes
are loaded into a
JVM. Simplistically

speaking, when a JVM starts it is
given a classpath that contains a list
of directories, or .jar files, and each
time the JVM wants to load a class
it scans the classpath until a match-
ing .class file is found. Having been
located, the .class file gets loaded by
the JVM’s ClassLoader and instances
can be created. This model of having
a JVM start up with all of its class-
path ducks lined in a row, requiring
termination and restarting when
anything changes, is overdue for an
overhaul.
 Fortunately, the OSGi alliance,
www.osgi.org, has been tackling this

–continued on page 6

From the Desktop Java Editor

Not Invented Here:
Reject, Repulse,

and Reinvent
 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2007 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Joe Winchester is

a software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

Joe Winchester

T

3April 2007

Software engineers are inventors,
and inventors like to build things from

first principles. ”
“

C
opyright 1996-2007 Infragistics, Inc. A

ll rights reserved. Infragistics, N
etA

dvantage and the
Infragistics logo are registered tradem

arks of Infragistics, Inc. A
ll other tradem

arks or registered
tradem

arks are the respective property of their ow
ners.

learn more: infragistics.com/jsf

Infragistics Sales - 800 231 8588 Infragistics Europe Sales - +44 (0) 800 298 9055

Simplify Complex Data – Our All-New Hierarchical Grid easily organizes and displays data in
nested grids

Maintain Readability – Fixed Columns keep critical column data in view while your users scroll

Built-in Flexibility – Our APIs allow incredible interactive experiences on the web

Great User Experience – Our AJAX-enabled components turbo-charge your web applications
for a rich client UI experience

NetAdvantage®

for JSF 2006 Volume 2
AJAX-enabled JavaServer™ Faces components

Build better UIs with
our JSF components.

Speed.
Simplicity.
Style.
Build better UIs with
our JSF components.

Speed.
Simplicity.
Style.

grids scheduling charting toolbars navigation menus listbars trees tabs explorer bars editors

WINDOWS® FORMS ASP.NET WPF JSF

netadvjsf_06vol2_JDJ_single-March.qxp 2/14/2007 11:53 AM Page 1

5April 2007JDJ.SYS-CON.com

APRIL 2007 VOLUME:12 ISSUE:4

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.
Periodicals postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

FROM THE DESKTOP JAVA EDITOR

Not Invented Here: Reject, Repulse,
and Reinvent
by Joe Winchester.................................3

MIGRATION

Bridging the Gap Between Open
Source and Commercial Applications
Part 2 - Migrating EJB 2.0 entity beans to
Hibernate POJOs
by Charles Lee.................................8

BPM SOLUTIONS

Minimizing the Impact of Change
Effective Business Process Management with IBM
WebSphere MQSeries Workfl ow
by Praveen K. Chhangani..............................24

ENTERPRISE

Spring and Java EE 5
Part 1: Simplicity and power combined
by Debu Panda..............................28

JSR WATCH

JSR Bookmarks at the
2007 JavaOne Conference
by Onno Kluyt.............................34

12

by Franz Garsombke

Feature

Using the
Java Persistence API (JPA)
with Spring 2.0

How to use JPA in new or
existing Spring applications to
achieve standardized persistence

by Mike Keith and

Rod Johnson
18

JDJ.SYS-CON.com6 April 2007

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Senior Vice President, Editorial and Events:

 Jeremy Geelan jeremy@sys-con.com

Advertising
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

Advertising Sales Director:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Corinna Melcon corinna@sys-con.com

Events

Events Manager:

Lauren Orsi lauren@sys-con.com

Events Associate:

Sharmonique Shade sharmonique@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Richard Walter richard@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

 Alicia Nolan alicia@sys-con.com

–continued from page 3

problem for about eight years now, dur-
ing which time it has created an ex-
tremely mature and well-thought
through dynamic module system for
Java. OSGi’s member companies are a
who’s who of today’s software giants:
BEA, Oracle, Motorola, IBM, Intel, Red
Hat, Ericsson, and numerous others.
Among the few absentees are Sun. The
OSGi component software module model
covers not only the execution environ-
ment, but encompasses life cycle man-
agement, as well as a registry of discov-
erable services. The technology is used
today by the Eclipse framework and,
along with the Standard Widget Tool-
kit, underpins applications built on the
Rich Client Platform. A sensible strategy
going forward would be for OSGi’s Java
component model to be included in the
language. Such an initiative exists: Java
Specification Request 291. JSR 291 was
recently ratified by the JCP, a move that
is goodness to all, from Java develop-
ers who can now build more flexible
and robust applications, right through

to the end users who will enjoy having
more dynamic, more resilient, and more
organic applications on their desktops,
their servers, and their mobile devices.
Everyone wins.
 For some strange reason though, a
cloud still lurks over JSR 291. Sun
voted against ratification of JSR 291
in a move that many in the community
are unable to reconcile as nothing more
than an extreme case of NIH. In their de-
fense Sun did have one other community
member who voted with them to block
the OSGi work becoming the de-facto
Java module mechanism, Hani Sulei-
man, a gentleman not shy of sharing his
opinions on the subject (http://www.
eclipsezone.com/eclipse/forums/t92517.
rhtml#92138332).

 To complicate matters for JSR watch-
ers, there is JSR 277 whose goal is to
create a new static component model for
Java 7. Many believe it is some kind of
last ditch rearguard action to undermine
JSR 291, OSGi, and, by ironic inference,
the JCP.
 Edmund Burke, the English philoso-
pher, once remarked that, “The only
thing necessary for the triumph of
evil is for good men to do nothing.”
He was remarking about the fact that
if nothing is done to counteract belliger-
ence, arrogance, and bellicose behavior,
then it will ultimately succeed. What I
find remarkably refreshing about the
Java space, however, is that time after
time the recipe that triumphs for success
is for strong positive arguments, strong
technology, and strong communities
to come together and tackle problems
collectively. Those who choose not
to participate are left behind and
the consensus moves forward to a
better place for the greater good of
all involved.
 As users of Java technology, we are
all ultimately judged by the ability of

the applications we build using the
Java language to succeed or fail in
front of our end users. The best way
to serve them is to remain focused on
their goals and wishes, collaborating
with others if necessary to find answers
to common problems, and intelligently
assessing and adopting technology
where relevant and applicable. The
worst way to serve our end users is
to adopt nihilistic attitudes to other’s
work, to engage in newsgroup insult
wars over complex issues, or to attempt
to apply a form of Java government
that, like the ClassLoader, while rele-
vant in the previous millennium, no
longer pulls its weight today and is
merely dated, anachronistic, and
ineffective.

From the Desktop Java Editor

As users of Java technology, we are all ultimately
judged by the ability of the applications we build
using the Java language to succeed or fail in front

of our end users”

“

JDJ.SYS-CON.com8 April 2007

igrating EJB 2.0 entity beans
to Hibernate POJOs is pretty
straightforward. Like many
applications, all of the data

for HQ is stored in the database, and we
need to map from the underlying data
store to an object-oriented view. In EJB
2.0, you would model that data with entity
beans. An entity bean is created and found
through the Home interface, and its fields
are modified through its Local/Remote
interface. These interface classes are auto-
matically generated when we use XDoclet
to annotate our entity bean implementa-
tions. We define the actual implementa-
tions in *EJBImpl classes. For example,
for each getter/setter, we annotate the
following:

/**

 * @ejb:interface-method

 * @ejb:persistent-field

 * @ejb:transaction type=”SUPPORTS”

 */

public abstract String getName();

/**

 * @ejb:interface-method

 * @ejb:transaction type=”MANDATORY”

 */

public abstract void setName(String name);

 For all getters, we mark the transaction
type as SUPPORTS so that it won’t neces-
sarily require a transaction. For all setters,
the transaction type is MANDATORY,
since modifications should be involved in
a transaction. The same class file defines
the create and finder methods, as well.
The create method is a function body
appropriately annotated with @ejb:cre-
ate-method; and the finders are in EJBQL
and written in pure annotation in this
class file. In EJB 2.0, the concept of Lo-
cal/Remote interfaces was introduced. We
decided to go with only local interfaces
for the entity beans so that they would
not be accessible remotely, and thus
bypass the permission checking that we
do when they are accessed or modified.
When we compile our code, out of each

EJBImpl class, we automatically generate
these additional classes:
• LocalHome: The local home interface

that contains the create and finder
methods

• Local: The local interface that con-
tains the getter/setter methods

• Util: The utility class that fetches the
home interface with the appropriate
JNDI name

The N+1 Database Problem
 The problem with entity beans has
been termed the “N+1 database prob-
lem”, and it’s referring to the number of
database calls to access entity beans. If a
finder was invoked on the LocalHome in-
terface, it will execute a query equivalent
to the following:

select pk from table where column = value

 PK is the primary key of the object, and
most often it’s the ID column. When you
load each entity bean into memory by
accessing its fields, the container will then
issue another query:

select * from table where id = pk

 If you do the math, for N rows found,
you will end up issuing N + 1 queries to
the database, henceforth the “N+1 data-
base problem”. Wait, there’s more. We find
that EJBs have a nasty habit of aggressively
locking up database rows or tables no
matter how much we tried to mark meth-
ods read-only, setting the container to lock
optimistically, or even marking transac-
tion type as NOTSUPPORTED. Maybe we
didn’t try hard enough, but we definitely
pulled a fair amount of hair out over this.
In fact, we found ourselves replacing
getId() calls with getPrimaryKey().getId(),
because while the ID has already been
fetched into the primary key, the container
would still do a database lookup when we
ask for the ID. We needed to avoid the ex-
tra table lookups and reduce the duration
of transactions to a minimum.

The Value Objects
 XDoclet provides the facilities for imple-
menting the Value Object pattern. The
motivation for the pattern is to avoid calls
through the entity bean’s interface for each
method call, which can be either local or
remote. We took it a step further: we cre-
ate a Value object (sometimes more than
one so that we can have “light” objects
that would incur the additional burden of
loading up the relationships, etc.) for each
entity bean and make sure to convert any
lookups of entity beans to Value objects,
and then cache the Value objects. Now,
when the system is properly cached, we
should be able to drop the “N” part of the
“N+1” lookups. We augmented XDoclet a
bit to account for this caching functional-
ity. In our EJBImpl class, we also annotate
the following for the generation of Value
objects:

 @ejb:value-object

 name=”Resource”

 match=”*”

 instantiation=”eager”

 cacheable=”true”

 cacheDuration=”300000”

 XDoclet will not only generate the
Value object class, it will also generate an
extension to our EJBImpl class to get/set
its Value objects. Now this is starting to
look a bit untidy. Take ResourceEBJImpl.
java, for example; when we compile it, we
get the following classes from one single
file:
• ResourceUtil
• ResourceLocalHome
• ResourceLocal
• ResourceEJBImpl
• ResourceValue
• ResourceCMP

 This simple task of mapping database
tables to objects has quickly become
cumbersome and error-prone. All these
annotations and transaction problems
can create bugs in areas that often cannot
be detected until runtime.

Migration

by Charles Lee

Bridging the Gap Between Open Source
and Commercial Applications

M

Charles Lee is

vice president

of engineering

at Hyperic.

Part 2 - Migrating EJB 2.0 entity beans to Hibernate POJOs

JDJ.SYS-CON.com10 April 2007

Moving On
 Given the issues that we have had with
the EJB 2.0 persistence layer, we decided
to get rid of EJB 2.0 entity beans in favor of
Hibernate. We would still keep the session
beans, because they encapsulated our
business logic. Hibernate uses plain old
Java objects (POJOs) to map to the underly-
ing data store. There is a mapping file
(HBM) that maps the database columns
to POJO fields and describes other object
relationships. We had chosen to imple-
ment the Database Access Object (DAO)
pattern, which abstracts and encapsulates
all access to the data source. A DAO would
define the create and finder methods,
just like the entity bean Home interface,
along with other CRUD methods. There
would be a DAO that would be created for
each Hibernate POJO to mirror the Home
interface relationship. We set out with the
following plan:
1. Create Hibernate POJO classes equiva-

lent to all entity beans and the cor-
responding HBM files; in addition, the
POJOs include getter/setter methods
for the entity beans’ Value objects.

2. Create corresponding DAO classes
and migrate the finders from EJBQL
to HQL (I will discuss the semantics of
the finders and the conversion issues
in a different article).

3. Replace all create and finder calls in
session beans to use the DAOs.

4. Generate and commit Value object
classes to the code base.

5. Remove the entity beans.

 Pretty simple, right? In fact, it really was
not more complicated than that. Granted,
this plan was the second version from our
exercise, but our application is divided
up into subsystems. We were able to test
out different strategies in one subsystem
before applying the right one to the entire
application.

The POJOs
 First of all, creating the HBM files
proved to be somewhat facilitated by the
fact that we had our own syntax for defin-
ing database schema in XML, because
we had developed our own database
schema creation tool. We were able to go
from something similar to our existing
database schema files and apply an XSLT
transformation to get the resulting HBM
files that we needed with a bit of tweak-
ing. The definition of container-managed
relationships (CMRs) in the HBM files

required some additional considerations,
as they were previously annotated in the
entity bean files. This is another topic that
I will cover in a later piece. Now, some
people choose to automate the generation
of POJO files from the HBM files. Perhaps
we were just a little tired of all the auto-
matic code generation and decided to just
hand roll the POJOs. It was not too much
trouble, and we had more control over the
content. There were other guidelines that
we stuck to:
• No import of DAOs: POJOs should not

be aware of any logic beyond the get-
ter/setter of its properties.

• Setter methods are package scoped
(default): We want to control the mod-
ification of data to only the classes in
the same package as the POJOs, which
are its DAOs, and the corresponding
session beans that contain the busi-
ness logic

• Collection getters return immutable
collections: Since we wanted to encap-
sulate the modifiers to the package, we
can’t be returning modifiable collec-
tions through the public getter inter-
face. However, we expose a separate
packaged scoped getter method for
the modifiable collection to the other
classes in the package.

 For example, for each operation, we
associate a Bag of Roles:

public Collection getRoles() {

 return Collections.unmodifiableCollec-

tion(_roles);

}

Collection getRolesBag() {

 return _roles;

}

void setRolesBag(Collection val) {

 _roles = val;

}

 We use a Pager concept extensively
throughout the application to do paging,
which would take a collection of entity
beans and apply the appropriate pag-
ing and convert the collection to Value
objects. The beauty of this scheme is that
it provides a single point to apply the
POJO to Value object transformation and
achieve the same functionality as before.
We wouldn’t have to do too much more
work after converting the application to
use the DAOs’ finders to convert to Value

objects, thus preserving our APIs and
caching behavior.
 We used the Factory pattern to facilitate
DAO instantiations. The DAOs encapsu-
lated the CRUD and finder methods for the
POJOs. Rewriting the finders in the DAOs
provided some interesting challenges, but
Hibernate Query Language (HQL) is much
more capable than Enterprise JavaBeans
Query Language (EJBQL). We did a first
pass, converting everything from EJBQL
to HQL, but then followed that with some
conversions to criteria-based queries. The
advantage of the queries inside actual
function bodies in DAOs over the anno-
tated finders in entity beans is the ability
to debug and step through the query calls;
through your IDE you can easily modify
the pending query string on-the-fly to
diagnose any problematic queries.
 The biggest benefit from the conver-
sion is the database-locking behavior.
Hibernate is smarter about performing the
write methods at the end of the transac-
tion, instead of eagerly locking entity beans
whenever their fields are being modified.
We had to rid ourselves of all the creative
transaction demarcation we were doing in
HQ in order to reduce the involvement of
transactions. Our previous strategy worked
for us, but it was ugly. Besides the API calls
being unpredictable whether it would be
involved in a transaction, we were also
sometimes creating extra transactions in
any one given API call just to get nested
transactions to close before returning.
Because of Hibernate’s behavior and trans-
action requirements, we had to go through
and clean up all of the different transaction-
type definitions and simply mark every-
thing as REQUIRED. Believe me, not having
to manage the complicated transaction
demarcations was a big step forward for us.
 This was the first phase in our con-
version from entity beans to Hibernate,
which lasted a little more than three
weeks. We actually did not go for a gradual
migration as we had originally intended;
instead, we went all in. We converted
roughly 80 entity beans to Hibernate.
There were other issues and lessons in
this conversion exercise, and we contin-
ued to evolve the code base from here.
We replaced our homegrown database
initialization routine, optimized queries,
changed session behavior, added second-
level caching to Hibernate, and have even
begun to get rid of Value objects. However,
this first step got us the eradication of EJB
2.0 entity beans, and it was good.

Migration

JDJ.SYS-CON.com12 April 2007

he Jedi mind trick is a Force power that can infl uence
the actions of weak-minded sentient beings. Vendors
will often try to apply the Jedi mind trick in selling
silver-bullet software solutions that solve global

warming and stop celebrity feuding while enabling service-
based architecture development. Let’s quickly put on our
aluminum foil caps and repel the Jedi mind trick by turning
to open source solutions. Service-based architectures are
being touted as the next step in reaching programming nir-
vana. With these marching orders it’s often diffi cult to build
a framework that allows for simple service creation. This
framework should also be fl exible, scalable, and lightweight
as well as easy in exposing services externally. Without the
correct framework(s) and guardrails in place your applica-
tion services can quickly become a jumbled mess. Circu-
lar dependencies, massive Ant scripts, zero component
reuse, and painful Web Service creation are just some of
the problems faced by developers today. This article will
demonstrate concepts on software lifecycle automation as
well as a lightweight approach to creating a service-based
architecture.

Building a Better Death Star
 Everyone has worked on a software project delivered
late (if at all) and over budget. I’m sure building the Death
Star was no different. This article will demonstrate how
to alleviate some of that pain by building a modular,
reusable, and service-based architecture using a combina-
tion of open source projects. Maven, XFire, Spring, and
Hibernate are all powerful frameworks when used alone.
The real power is realized when they are used in conjunc-
tion. Maven is a software management tool that allows for
module inheritance, dependency management, and over-
all project comprehension. XFire is a simple yet feature-
rich framework that can expose any plain old Java object
(POJO) as a Web Service. Spring is a layered Java applica-
tion framework used to wire services together. Hibernate
is an object-relational-mapping persistence and query
service for Java.

You Say Jabba Desilijic Tiure, I Say Jabba the Hutt
 Jabba Desilijic Tiure was one of the most notorious
crime lords in the Star Wars galaxy. You probably didn’t

know who the term Jabba Desilijic Tiure referred to but if
Jabba the Hutt was mentioned you’d know right away the
creature in question. A common data dictionary is benefi-
cial on any project or document. Before we continue a few
key terms should be defined so it doesn’t sound like this
article was written in Shyriiwook (Wookiespeak).
• Service: The term service refers to a “discretely defined

set of contiguous and autonomous business or techni-
cal functionality.” One of the goals in creating a robust
application framework is the ability to expose services
through a number of different protocols. Creating
services as POJOs will let us use other frameworks
either to expose these externally or consume them
internally.

• POM (Project Object Model): The POM is an XML
representation of a Maven project. A POM consists of
information regarding dependencies, defect tracking,
repository metadata, mailing lists, plug-in goals, and
any other configuration details used to encompass fully
the complete lifecycle of a project.

• Module: A module is a logical as well as physical part of
your application. Layers and services in your applica-
tion can be represented by physical Maven modules
that logically make up the different components of your
architecture.

• Build Dependencies: Maven manages different types of
build dependencies for projects and cross-projects. A
dependency is typically a jar file that a project needs for
compilation, testing, or runtime behavior. Dependencies
can be managed declaratively in your Maven project
file. Maven also seamlessly manages transitive depen-
dencies (dependencies of dependencies) and circular
dependencies. Transitive dependencies are impossible
to manage in Ant. Circular dependencies are particularly
hard to manage in Ant since most of the time the source
code for an application is compiled in one big mess. No
feedback is given if, for example, the core layer of your
architecture has a dependency on your service layer.

• Build Lifecycle: Software projects typically need the
same tasks done to build and deploy code. Maven has
a predefined set of phases each performing a series of
actions to encompass a build lifecycle. Some common
phases are validate, generate resources, compile, test,

Franz Garsombke has been

developing and architecting

enterprise software solutions in

Colorado for the last 11 years and

is currently employed at Rally

Software. He is a huge proponent

of open source frameworks and

passionate about developing

and delivering simple quality

pragmatic applications. He is

proud to be the co-founder of a

Java Bean mapping framework

(http://dozer.sourceforge.net).

fgarsombke@yahoo.com

by Franz Garsombke

T

by Franz Garsombke

 Enable a
Module-Based Approach
 to Constructing

 Services

Using the force (and open source)

Feature

13April 2007JDJ.SYS-CON.com

package, integration test, and deploy. Maven plug-ins can
be used to add functionality to a standard build lifecycle.
Lifecycle phases should be managed by your software
project management tool and not bolted onto a tool like
Ant. Figure 1 shows some common lifecycle phases and
the tasks they perform.

Just Say No to a ‘Jabba the Hut’ Architecture
 It’s more than likely that everyone has worked on an ap-
plication that suffered from this syndrome. All it took was
consuming one or two salacious crumbs a day without giv-
ing the application the care and feeding it needed. Bloating,
circular dependencies, and the absence of separation of
concerns are telltale signs that your architecture is turning
into Jabba the Hut. Anyone using Java has surely written a
few Ant files in the course of their career each consisting
of thousands of lines of XML. Everything seems fine until
your code base grows or more developers are added to the
project. It’s not simple to manage modules (or sub-projects)
and dependencies using Ant as your build system. It’s a
great tool but it’s outdated and too many people have tried
to turn it into something it shouldn’t be. A good analogy of
Maven compared to Ant is the symbiotic relationship be-
tween Hibernate and JDBC. Hibernate provides an abstrac-
tion layer on top of JDBC and can provide a broader scope
and range of features than the JDBC framework. The Maven
plug-ins provide all the features of Ant as well as a standard
way of interfacing with external tools and frameworks like
Cargo (application container management), configuration
management repositories, Hibernate, XFire, etc. Maven also
brings a much broader set of features and concepts to the
table than Ant.

Star Wars Convention? No, Not That Kind of Convention…
 Maven’s magic in building software is similar to the Ruby
on Rails approach to programming in that most common
tasks have default sensible strategies in place. This phi-
losophy is called “Convention over Configuration.” Trading
flexibility at the infrastructure level by having standard di-
rectory layouts, standard naming conventions, and standard
lifecycle phases promotes less emphasis on mundane details
like building and deploying and allows for more time spent
on the application’s design and implementation. The guard-
rails Maven puts in place are necessary for a tight applica-
tion but often don’t get installed and are typically not given
the care and feeding they need.
 Software build structure layering should be the founda-
tion of your application. This layering is prevalent at many
levels in your ecosystem. It starts at your build system
and feeds into your application. At an even broader scale
this can be seen from your application into the enterprise.
This was all made possible by a well structured build
system.

 I Am Your Father Luke
 Project inheritance? Are you crazy? Wouldn’t it be nice if
there was a build system that handled software manage-
ment lifecycle tasks and had some familiar and powerful
object-oriented constructs like inheritance, encapsula-
tion, cohesion, composition, and aggregation? I first used
Maven 1 on an open source project solely for dependency
management and site documentation. Frankly, I thought
everything else it did was pretty miserable. I found myself

always needing to drop into Ant to do trivial things. With
the release of Maven 2 these highly desired features are
present along with a lot more. This article is by no means a
Maven tutorial but will show some key concepts as well as
how to integrate it with some other important open source
frameworks.
 Maven comes with a feature rich set of plug-ins that
provide core as well as enhanced functionality. Plug-ins
are executed as part of the build lifecycle to perform tasks
necessary to build a project. These plug-ins run unit tests,
compile code, package software, and generate project
reports among other things. Maven also has an extensible
architecture that allows one to write any number of custom
plug-ins to integrate with third-party tools or fulfill special
tasks. One of the main benefits of using Maven is the ability
to define a large amount of your build infrastructure in a
parent project and inherit these dependencies and precon-
figured plug-ins as well as any other lifecycle logic in your
sub-modules. Here’s a quote from Better Builds with Maven
that sums up the tool, “Maven is a way of approaching a set
of software as a collection of highly interdependent com-
ponents that can be described in a common format. It’s the
next step in the evolution of how individuals and organiza-
tions collaborate to create software systems.”

Now, Onto Building a Better Death Star
 Everybody knows that the Death Star was destroyed by
Luke Skywalker in Star Wars Episode IV: A New Hope. What
they don’t know is that another Death Star is being built
using the latest and greatest Java frameworks. I guess you
could say it’s our lucky day. It’s not easy constructing a
monumental bringer of death out in the middle of no-
where. Droids, and many of them, must be gathered from
across the galaxy to help in its construction. The system
we’ll be building for the Galactic Empire is an android
(droid for short) provisioning system. I know that the
Federation is in essence the Dark Side but the rates and
benefits are outstanding. It doesn’t hurt that there’s free
light saber training and laser target practice on Wednesday
nights.
 The key concepts that should be remembered throughout
this exercise are:
• All of the services (modules) are POJOs that can be

injected into any other module. These services could be
a Web Service, data access service, common framework,
business logic, or any number of other things required to
make your application function.

• A service is a service is a service. Since our services are
POJOs as well as Spring wired beans they can be exposed
externally through any number of transport protocols.
There are many frameworks that are tightly integrated
with Spring that let you expose a Spring bean over HTTP,
JMS, RMI, etc.

 Figure 1 Common lifecycle phases

JDJ.SYS-CON.com14 April 2007

 Let’s look at the services that comprise our droid provision-
ing system as well as the key technologies that are used to
bring it to life. Figure 2 shows the Maven modules of the droid
provisioning application and their mapping to logical services
with technology implementations.
 This sample application will demonstrate injecting services
(both through Spring and Maven), WSDL-first development
using XFire, and the creation of a data access service layer us-
ing Hibernate. All of the corresponding code for this example
can be found at http://dozer.sourceforge.net/example.zip.

Anatomy of the Parent POM
 Maven provides the concept of a parent module that is key
to project inheritance. This module lets you define common
dependencies, organizational information, deployment infor-
mation, and common plug-ins. A skeleton of the provisioning
application’s POM file is shown in Listing 1.
 This listing shows a typical POM layout structure. This file
defines project-wide dependencies, project metadata, and
common plug-in configurations.

In a Galaxy Far, Far Away
 Let’s code. The first thing we need is a common module
that can be used by all upstream modules. This core module
is comprised of one service but could potentially hold many
others. Our core service really doesn’t do much except elabo-
rate on the concept of injecting and reusing services. Here’s
our service defined as a Spring bean in our module’s Spring
context file:

<bean id=”coreService” class=”com.examples.droid.core.service.

CoreService”/>

 This bean references a Java class called CoreService
that executes some core functionality.
 The Maven configuration for this module is in
Listing 2.
 By defining our core module as a packaging type of jar
Maven will compile our code, run unit tests, and package
our classes into a jar file. The parent module inheritance is

defined at the top of the configuration. No dependency
version numbers are needed since they are defined in the
parent. Let’s see how this service can be used in sibling
modules.

Springtime for Storm Troopers
 Maven has the concept of dependency management to
Spring’s concept of dependency injection. At an abstract level
the two are very similar and work hand-in-hand allowing for
a reusable pluggable architecture. To add the core module as
a dependency of another module we simply have to define it
in our sibling module’s POM file.

<dependencies>

 <dependency>

 <groupId>com.examples.droid</groupId>

 <artifactId>droid-core</artifactId>

 </dependency>

 …

<dependencies>

 The version for the dependency has been defined in the par-
ent module. To use the service defined in the core module we’d
simply inject it into the service defined in the sibling module’s
Spring context file.

<bean id=”provisioningServiceImpl” class=”com.examples.droid.

ws.provisioning.ProvisioningServiceImpl”>

 <property name=”coreService” ref=”coreService”/>

 …

</bean>

 To reference the Spring context defined in the core module
it needs to be included in the list of context files that make up
the system’s Spring ApplicationContext:

String[] configFiles = new String[] { “spring/droid-core-beans.xml”,

 “spring/droid-dao-provisioning-beans.xml” };

BeanFactory factory = new ClassPathXmlApplicationContext(configFiles);

 We now know how to create a service module and inject it
through Maven dependency management as well as through
Spring’s dependency injection. Let’s create some more services
while working up our layers of the architecture.

Darth Vader Wants His TPS Reports!
 Darth Vader has seen the initial budget for the new
Death Star and is having heartburn. He needs a way to run
some queries on our android provisioning database. Darth
is pretty savvy so he chose Hibernate for the application’s
object relational mapping (ORM) persistence framework.
Using Hibernate tools to reverse-engineer the database
lets us dynamically generate our ORM files and data access
objects. Since we rely on this generated code before we
compile our persistence module we can simply bind the
Hibernate tool’s source generation task to a particular
Maven lifecycle phase. The Hibernate source generation
is done at the generate-sources lifecycle phase in Maven
by defining our plug-in’s phase element as shown in
Listing 3.

Feature

 Figure 2 Visual representation of our physical project layout and its mapping to our

logical architecture

15April 2007JDJ.SYS-CON.com

 This task was done in a maven-antrun-plugin as an Ant task since
when this article was written the Hibernate tool’s Maven plug-in
wasn’t as robust as the Ant task. The Maven variable maven.compile.
classpath lets you have all of the module’s dependencies and transi-
tive dependencies at your fingertips.
 Typically, a real-world application will have a database running
for these Hibernate tools tasks to reverse-engineer against. The ex-
ample code uses a HSQL database engine to simulate this behavior.
The source code to start-up, create, and populate the database can
be found in the example application.
 The data access service is defined in our Spring context file in Listing 4.
 The database consists of one table called ANDROID that’s mapped
to a Java class called Android. The generated data access object can
then be used in our data access provisioning service:

public class ProvisioningDaoImpl extends AbstractDao implements

ProvisioningDao {

 public Android findDroid(String id) {

 return (Android) load(Android.class, id);

 }

}

public abstract class AbstractDao {

 public Object load(Class clazz, Serializable id) {

 return this.sessionFactory.getCurrentSession().load(clazz, id);

 }

}

 The configuration needed for Hibernate is performed behind the
scenes using Spring.

WSDL-First, You Must Do
 Vader is getting impatient. He still can’t access his TPS reports since
there’s no external API. We can expose our data access service with a
Web Service using a simple framework called XFire. Let’s examine the
steps to enable simple top-down Web Service creation.
 WSDL-first development is the concept of writing the interface for
your Web Service before you write the code. WSDL-first development
makes sense because it focuses less on a particular programming
language and more on the messages between systems. Many people
take the approach of generating the WSDL from existing code whether
it’s an EJB, POJO, or some other programming construct. WSDL-first
takes a more top-down approach wherein the schema and WSDL are
designed first and code generation happens from there. XML Schema
is language-independent and provides more flexibility than a lot of
programming languages. Client code, interfaces, implementation code,
and schema types can all be generated from a WSDL and schema by a
number of SOAP stack frameworks. One of the main benefits of WSDL-
first development is improving interoperability between disparate
systems programmed in different languages.
 Taking our top-down approach let’s look at an operation defined on
our WSDL:

<wsdl:operation name=”findDroid”>

 <soap:operation style=”document” soapAction=”findDroid”/>

 <wsdl:input><soap:body use=”literal”/></wsdl:input>

 <wsdl:output><soap:body use=”literal”/></wsdl:output>

</wsdl:operation>

 The document/literal approach to constructing a Web Service is
more straightforward and solves many interoperability issues since
it simply relies on XML Schema to describe exactly what the mes-
sage looks like when delivered. Also, document/literal is WS-I (Web
Services Interoperability) compliant. The request and response mes-
sages are defined below:

 <xs:element name=”findDroid” type=”provisioning:findDroid”/>

 <xs:complexType name=”findDroid”>

 …

 </xs:complexType>

 <xs:element name=”findDroidResponse” type=”provisioning:findDroid-

 Response”/>

 <xs:complexType name=”findDroidResponse”>

 …

 </xs:complexType>

 By using a combination of XMLBeans (one of the many XML
binding mechanisms supported by XFire), XFire, and our WSDL we
can use separate tasks in Maven to generate everything needed to
build a Web Service. There’s an execution step defined in our ma-
ven-antrun-plugin in Listing 5.
 All of the Web Service code generation is done in the generate-
sources phase of the Maven build lifecycle. This lets us generate
all of the messaging objects we rely on before our implementation
code needs to compile against them. Since all of our messaging ob-
jects have been generated we can now implement our provisioning
Web Service. XFire creates an implementation class based on
the WSDL provided. That same class will be used to implement
all of the business logic needed by our system.
 The provisioning service is injected with the core service
and data access service defined and implemented in earlier
modules. The code in Listing 6 shows the provisioning service
using the two services it’s dependent on to look up android
information.
 The only thing left to do is wire up our provisioning Web Ser-
vice. An important thing to note is that the provisioning service is
a POJO. We could easily inject it into a different transport protocol
implementation. XFire is used in this instance. We define our provi-
sioning service as a service bean in XFire’s service factory and are off
and running.

<serviceFactory>org.codehaus.xfire.xmlbeans.XmlBeansServiceFactory</serviceFactory>

 <serviceBean>#provisioningServiceImpl</serviceBean>

 </service>

 <bean id=”provisioningServiceImpl” class=”com.examples.droid.ws.provisioning.

ProvisioningServiceImpl”>

 <property name=”coreService” ref=”coreService”/>

 <property name=”provisioningDao” ref=”provisioningDaoImpl”/>

 </bean>

 XFire takes care of the Web servlet, marshaling/unmarshaling
of the SOAP messages, and determining which service and which
operation needs to be executed. If our requirements dictate that
we need a composite service comprised of the provisioning service
and some other service we could just create a higher-level module
and inject the services that have already been built. The provision-
ing service would then be just a POJO as opposed to a formal Web
Service.

JDJ.SYS-CON.com16 April 2007

Empire Building
 The example demonstrates how Maven can be leveraged to
create an entire framework that developers can work in. If the
infrastructure is set up properly developers can leverage and
reuse many tasks through project inheritance and common
plug-ins. Consistency goes a long way in creating large enter-
prise applications. Adopting a “convention over configura-
tion” approach will let developers build a general framework
that will scale to large projects.

The Saga Continues
 I encourage you to dive deeper into the Maven application
management tool and think about how it can really drive and
enable a more modular service-based vision for your archi-
tecture. I also encourage you to look into using Maven with
the other open source frameworks listed in this article. The
build system is truly a reflection of your application’s health
in terms of maintainability and the ability to bolt on new
modules in a timely manner. This article demonstrated at a
conceptual level how many different open source frameworks

could be glued together to create an extremely flexible
layered architecture able to expose modules as services.
These services can be reused in other parts of an applica-
tion by merely injecting them into horizontal or upstream
modules.

Acknowledgements
 I would like to thank Steve Meyer and Chris Swift for invaluable
editing comments and ideas.

References
• Cargo: http://cargo.codehaus.org/
• Dependency Injection: http://www.martinfowler.com/arti-

cles/injection.html
• Hibernate: http://www.hibernate.org/
• Maven: http://maven.apache.org/
• Spring: http://www.springframework.org/
• Star Wars: http://en.wikipedia.org/wiki/Star_Wars
• XMLBeans: http://xmlbeans.apache.org/
• XFire: http://xfire.codehaus.org/

Feature

Listing 1

<?xml version=”1.0”?>

<project>

<modelVersion>4.0.0</modelVersion>

 <groupId>com.examples.droid</groupId>

 <artifactId>droid</artifactId>

 <packaging>pom</packaging>

 <version>1.0</version>

 <name>droid</name>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.codehaus.xfire</groupId>

 <artifactId>xfire-spring</artifactId>

 <version>1.2.4</version>

 </dependency>

 <dependency>

 <groupId>com.examples.droid</groupId>

 <artifactId>droid-core</artifactId>

 <version>${project.version}</version>

 </dependency>

 …

 </dependencies>

 </dependencyManagement>

 <modules>

 <module>droid-core</module>

 <module>droid-dao-provisioning</module>

 <module>droid-ws-provisioning</module>

 </modules>

 <build>

 <plugins>

 …

 </plugins>

 </build>

</project>

Listing 2

<?xml version=”1.0”?>

<project>

 <parent>

 <groupId>com.examples.droid</groupId>

 <artifactId>droid</artifactId>

 <version>1.0</version>

 </parent>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.examples.droid</groupId>

 <artifactId>droid-core</artifactId>

 <packaging>jar</packaging>

 <name>droid core</name>

 <dependencies>

 <dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 </dependency>

 … … …

 </dependencies>

</project>

Listing 3

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-antrun-plugin</artifactId>

 <executions>

 <execution>

 <id>generate-hibernate-source</id>

 <phase>generate-sources</phase>

 <configuration>

 <tasks>

 <!-- Enable the HibernateToolTask -->

 <taskdef name=”hibernatetool”

17April 2007JDJ.SYS-CON.com

 classname=”org.hibernate.tool.ant.HibernateToolTask”

classpathref=”maven.compile.classpath”/>

 <!-- Generate XML metadata mapping files from database schema -->

 <hibernatetool>

 …

 </hibernatetool>

 </tasks>

 </configuration>

 <goals>

 <goal>run</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

Listing 4

 <bean id=”provisioningDaoImpl” class=”com.examples.droid.dao.provision-

ing.ProvisioningDaoImpl”>

 <property name=”sessionFactory” ref=”provisioningSessionFactory”/>

 </bean>

 <bean id=”provisioningSessionFactory” class=”org.springframework.orm.

hibernate3.LocalSessionFactoryBean”>

 <property name=”dataSource” ref=”provisioningDataSource”/>

 <property name=”mappingResources”>

 <list>

 <value>com/examples/droid/dao/provisioning/Android.hbm.xml</value>

 </list>

 </property>

 <property name=”hibernateProperties”>

 <props>

 <prop key=”hibernate.dialect”>org.hibernate.dialect.HSQLDialect</

prop>

 <prop key=”hibernate.hbm2ddl.auto”>create</prop>

 </props>

 </property>

 </bean>

Listing 5

<execution>

 <id>generate-wsdl-types</id>

 <phase>generate-sources</phase>

 <configuration>

 <tasks>

 <!-- generate and compile types from our schema -->

 <taskdef name=”xmlbean” classname=”org.apache.xmlbeans.impl.tool.

XMLBean” classpathref=”maven.compile.classpath”/>

 <xmlbean

 classgendir=”${project.build.directory}/classes”

srcgendir=”${project.build.directory}/generated-source”

 classpathref=”maven.compile.classpath”

 failonerror=”true”

 javasource=”1.5”>

 <fileset dir=”src/wsdl” includes=”*.wsdl”/>

 </xmlbean>

 <!-- generate our service client, interface, and impl class -->

 <!— using XFireʼs web service generation task -->

 <wsgen outputDirectory=”${project.build.directory}/generated-source”

 wsdl=”${basedir}/src/wsdl/${project.artifactId}.wsdl”

 package=”${project.groupId}”

 generateServerStubs=”true”

 binding=”xmlbeans”/>

 </tasks>

 <sourceRoot>${project.build.directory}/generated-source</

sourceRoot>

 </configuration>

</execution>

Listing 6

Public class ProvisioningServiceImpl implements ProvisioningServicePort {

 private CoreService coreService;

 private ProvisioningDao provisioningDao;

 public FindDroidResponseDocument findDroid(FindDroidDocument find-

DroidRequest) {

 FindDroidResponseDocument document = FindDroidResponseDocument.

Factory.newInstance();

 // Calling the core service to execute some functionality

 getCoreService().doSomething(“do something”);

 // Use the data access service and call the method findDroid()

 // to find our droid

 Android android = getProvisioningDao().findDroid(findDroidRequest.

getFindDroid().getDroidId());

 FindDroidResponse response = document.addNewFindDroidResponse();

 response.setIsError(false);

 DroidInfo droidInfo = response.addNewDroidInfo();

 // in essence this is our mapping of domain objects (Android) to

 // our message objects (DroidInfo). Never expose your domain

 // objects to the outside world.

 droidInfo.setName(android.getName());

 response.setDroidInfo(droidInfo);

 return document;

 }

 getters() and setters() for the two injected services…

}

JDJ.SYS-CON.com18 April 2007

he EJB 3.0 Java Persistence API (JPA) was released
in May 2006 as part of the Java Enterprise Edition 5
(Java EE) platform, and it has already garnered a great
deal of attention and praise. What began as merely an

easier-to-use successor to the much-maligned container-
managed persistence (CMP) portion of the EJB component
standard soon evolved into a full-blown incorporation of the
existing best practices of the most prominent and popular
object-relational (O-R) persistence products in use. The
result is that applications now have a modern standard for
lightweight enterprise Java persistence that they can use in
any compliant Java EE 5 application server, or in Java Stan-
dard Edition (SE) applications.
 The Spring application framework has been in existence
for four years, and it has become a popular choice both
in an application server context and standalone. Like JPA,
Spring is a technology designed to allow applications to
be built from POJOs. The Spring Framework runs within
whatever runtime context an application requires, and it
supports applications by providing a wide range of ser-
vices. Some of these services are abstractions over existing
container-level services, whereas others add value to the
Java EE container. The persistence access layer, which is
particularly popular with the Spring community, is nicely
integrated with whatever persistence runtime is being used
and facilitates a sound testable architectural approach to
working with persistent objects. Spring 1.x included support
for a variety of open source and commercial persistence
implementations such as TopLink, Hibernate, iBATIS, and
JDO, as well as the standard Java database connectivity
(JDBC) API that’s part of the Java runtime. Spring 2.0 was a
major milestone and introduced additional integrated sup-
port for JPA. In this article we’ll discuss how to use Spring
and JPA together and highlight some of the benefi ts that this
architecture can bring to an application.

Spring as a JPA Container
 The Java Persistence API was architected so it could be
used both inside and outside a Java EE 5 container. When
there’s no container to manage JPA entity managers and
transactions, the application must bear more of the man-
agement burden. When running in a JPA container the user
experience is more hospitable.

 One goal of the JPA specification was to make the tech-
nology pluggable. To enable this, the roles of container
provider (the container or the side that has control of
the runtime threads and transactions), and persistence
provider (the provider or the part that implements the
persistence API and manages the persistent entities) were
defined, and a service provider interface (SPI) binds the
two at deployment and runtime. A compliant JPA host
container correctly implements this SPI from the con-
tainer perspective. A compliant JPA persistence provider
implements the SPI from the provider perspective. If both
sides follow the rules, a compliant container should be
able to run any compliant persistence provider imple-
mentation, and similarly, a provider should plug into any
container.
 Although Spring is neither an application server nor a
Java EE 5 container, it does enhance, augment, and some-
times implement many of the services used in application
servers. Spring 2.0 implements the container portion of
the JPA SPI so it can be viewed as a JPA container. As such,
it provides the class-loading and weaving support that
JPA providers use to help manage the entities at runtime.
Users benefi t from an environment in which the runtime
container and the JPA persistence provider are tightly
integrated, but not necessarily in a Java EE 5 context. This
provides many of the benefi ts of Java EE persistence with-
out requiring a Java EE container.

Defi ning Entities
 The most basic part of using JPA is to design and create
the entities to be persisted. For the purposes of this article,
we will use an extremely simplifi ed library book inventory
system with a single entity to illustrate the concepts con-
cretely in Java code.
 We’ll create a simple Book entity by defi ning the class
and annotating it with an @Entity annotation. The table
that stores book instances will default to BOOK, which is
exactly what we want. The primary key identifi er is the isbn
fi eld, so we annotate that fi eld with @Id. Because the title
and author fi elds are basic mappings from the object fi elds
to columns of the same name in the database table, we
don’t have to do anything to them. We want the genre fi eld
to map to a database column named CATEGORY, so we give

Mike Keith has more than 15

years of teaching, research

and practical experience in

object-oriented and distributed

systems, specializing in object

persistence. He was the co-

specifi cation lead for EJB 3.0

(JSR 220), a member of the

Java EE 5 expert group (JSR

244) and co-authored the

premier JPA reference book

Pro EJB 3: Java Persistence API.

Mike is currently a persistence

architect for Oracle and a

popular speaker at numerous

conferences and events around

the world.

by Mike Keith and Rod Johnson

T

Using the

Java Persistence API (JPA)
with Spring 2.0

Feature

How to use JPA in new or
existing Spring applications to

achieve standardized persistence

How to use JPA in new or
existing Spring applications to

achieve standardized persistence

How to use JPA in new or How to use JPA in new or How to use JPA in new or
existing Spring applications to existing Spring applications to existing Spring applications to

achieve standardized persistenceachieve standardized persistenceachieve standardized persistence

How to use JPA in new or
existing Spring applications to

achieve standardized persistence

19April 2007JDJ.SYS-CON.com

it a @Column annotation. The resulting Book entity class
is shown below.

package org.bookguru;

import javax.persistence.*;

@Entity

public class Book {

 @Id private int isbn;

 private String title;

 private String author;

 @Column(name=”CATEGORY”)

 private Genre genre;

 // Constructors, getters and setters, etc.

}

 Of course a real application would have many entities,
but because we want to focus on the use of JPA in Spring,
we won’t explain how to defi ne and map JPA entities. For
more information on defi ning JPA entities see Pro EJB 3: Java
Persistence API.

Using JPA Entities in Spring
 The primary way to operate on entities is by using an
entity manager. The EntityManager API is the main gate-
way into JPA and supports basic create/read/update/delete
(CRUD) operations. It acts as both a manager of all loaded
entities and a factory for queries that enable more entities
to be loaded. An entity manager is analogous to an Oracle
TopLink session, Hibernate session or an equivalent inter-
face provided by many O-R mapping frameworks.
 For example, to create a new persistent entity we would
simply create a new Java object of the correct entity type,
invoke the persist() method on the entity manager, and
pass the new entity as a parameter. Assuming we have ac-
cess to an entity manager, the code to create a new book is
simple.

 Book book = new Book(12769356, “War and Peace”,

 “Leo Tolstoy”, Genre.FICTION);

 entityManager.persist(book);

 Using JPA and the entity manager in Spring is very
simple. In most cases it’s simply a matter of annotating a
fi eld or method of a Spring bean with @PersistenceCon-
text, which causes an entity manager to be injected. Then
invoke the entity manager in the context of a container
transaction. Note that @PersistenceContext is a standard
JPA annotation and not specifi c to Spring.
 Using Spring, the transaction can be started and com-
mitted (or rolled back) at method entry and exit. All that
needs to be done to achieve this is to declaratively state
that the automatic transaction demarcation should hap-
pen. In Spring 2.0 the easiest way to do this is by annotat-
ing the bean class or method with the @Transactional an-
notation, although it’s also possible to use XML metadata
that doesn’t require annotating Java code. The type of
transaction that’s started depends on the type of transac-

tion manager that’s confi gured in the Spring application
context; knowledge of the underlying transaction infra-
structure is completely abstracted from the Java code.
 An example of a Spring bean that’s transactional and
uses an entity manager to perform JPA operations is the
BookInventorySystem class shown below.

package org.bookguru;

import javax.persistence.*;

import org.springframework.transaction.annotation.Transactional;

@Transactional

public class BookInventorySystem {

 @PersistenceContext(unitName=”BIS”)

 EntityManager em;

 public void addBook(int isbn, String title,

 String author, Genre genre) {

 Book book = new Book(isbn, title, author, genre);

 em.persist(book);

 }

}

 This class looks fairly ordinary except that the presence
of two additional annotations, @Transactional and @Per-
sistenceContext, provides us with a great deal more func-
tionality. The @Transactional annotation causes all the
methods in the class to get an automatic transaction, so a
transaction will be provided whenever a caller invokes the
addBook() method. We could just as easily have annotated
the method directly to get this behavior, but the likelihood
of adding more methods that also need a transaction is
quite high, so the class is the best place for it.
 The em fi eld will get injected with an instance of Entity-
Manager. The entity manager injected will be confi gured
according to the named persistence unit referred to in the
unitName attribute of the @PersistenceContext annota-
tion. Named persistence units are defi ned and confi gured
in the JPA persistence.xml confi guration fi le and in the
Spring application context as part of the entity manager
factory bean (see Confi guring the Application Context
later in this article).
 Despite the sparseness of the operations (we could fi ll it
in with more operations and queries, but it’s suffi cient for
purposes of illustration), we have a functional system, and
we can now turn to the confi guration.

Confi guring persistence.xml
 The standard JPA confi guration fi le is an XML fi le called
persistence.xml, and it’s placed in the META-INF directory of
the jar archive or on the classpath. When using JPA in most
runtime environments, this fi le will contain most of the
runtime confi guration information (except O-R mapping).
However, when using JPA in Spring, this fi le contains only the
defi nition of the persistence unit and sometimes a list of the
entity classes (if not running in a server deployment environ-
ment). An example of a persistence.xml fi le for us is shown
below.

<persistence xmlns=”http://java.sun.com/xml/ns/persistence”

 version=”1.0”>

Rod Johnson is the CEO of

Interface21 and an authority

on Java and J2EE development.

He is a best-selling author,

experienced consultant, and

open source developer, as

well as a popular conference

speaker. Rod is the founder of

the Spring Framework, which

began from code published

with Expert One-on-One J2EE

Design and Development.

JDJ.SYS-CON.com20 April 2007

 <persistence-unit name=”BIS” transaction-type=”RESOURCE_LOCAL”>

 <class>org.bookguru.Book</class>

 </persistence-unit>

</persistence>

 The type of transaction also depends on the deployment
environment. In this example, we’re running in a simple Java
SE virtual machine (VM) and don’t have access to a JTA trans-
action manager, so we set the transaction type to RESOURCE_
LOCAL.

Configuring the Application Context
 Every Spring application must eventually construct an
application context — a set of bean definitions that specify
the dependencies that a bean has on others. A Spring “bean”
is a component in the application; it’s configured by Spring
and eligible to benefit from the services Spring provides. The
application context determines how the beans fit together
at runtime and provides the flexibility to rewire parts of an
application in different ways without having to change the ap-
plication Java code.

Configuring the Entity Manager Factory Bean
 As part of its support for JPA, Spring 2.0 provides
several JPA-related classes intended to be used as Spring
beans. The most important of these is the entity manager
factory bean, which makes a JPA entity manager factory
available to the application. This bean has dependencies
that determine the parameters of JPA execution in Spring,
and although many of these settings can be defined in
the JPA persistence.xml file, the Spring application
context can provide additional flexibility and configur-
ability. It also provides a configuration style and experi-
ence that’s consistent with what Spring users are
accustomed to.
 Configuring the entity manager factory bean involves
configuring three main dependencies: the persistence unit
name, the data source, and the load time weaver. This is done
as follows:

 <bean id=”entityManagerFactory”

 class=”org.springframework.orm.jpa.

 LocalContainerEntityManagerFactoryBean”>

 <property name=”persistenceUnitName” value=”BIS”/>

 <property name=”dataSource” ref=”dataSource”/>

 <property name=”loadTimeWeaver”

 class=”org.springframework.instrument.classloading.

 InstrumentationLoadTimeWeaver”/>

 <property name=”jpaVendorAdapter” ref=”vendorAdapter”/>

 </bean>

 The type of component created by this bean definition is
EntityManagerFactory, which is the starting point for JPA
usage.
 The persistence unit name is just the name of the persis-
tence unit, and the data source is defined in the usual way.
Spring always uses one or more Java 2 Standard Edition (J2SE)
data source definitions as the starting point for persistence
configuration. A number of data source types are available,
but in this case we’re using a simple pooled JDBC data source
defined as follows:

 <bean id=”dataSource”

 class=”org.apache.commons.dbcp.BasicDataSource”>

 <property name=”driverClassName”

 value=”oracle.jdbc.OracleDriver”/>

 <property name=”url”

 value=”jdbc:oracle:thin:@booksvr.org:1521:

BOOKS”/>

 <property name=”userName” value=”scott”/>

 <property name=”password” value=”tiger”/>

 </bean>

 The loadTimeWeaver property specifies the weav-
ing strategy that Spring uses to implement the container
provider SPI and provides the weaving capability. In this
example we use the instrumentation feature introduced in
the Java SE 5 VM (specified on the jre command line) so we
specify the InstrumentationLoadTimeWeaver class. If we
were running in a Tomcat server, we would set this to Re-
flectiveLoadTimeWeaver and use the Tomcat class loader
provided by Spring. If we were running Spring inside the
Oracle Containers for J2EE (OC4J) server, we would set it to
OC4JLoadTimeWeaver, which plugs into the special class-
loading support in OC4J.

Configuring the Vendor Adapter
 A keen observer might have noticed that we snuck an addi-
tional fourth dependency into the entity manager factory bean
and wired it to a bean called vendorAdapter. The jpaVendorA-
dapter property is an optional property that facilitates setting
vendor-specific properties that are common across providers.
These properties detail:
• Whether the SQL traces should be logged
• The database platform that’s being used
• Whether the schema should be generated in the database

when the application starts

 We added this property because the various persistence
providers tend to provide a mechanism for configuring
these properties, but the mechanisms differ from provider

Feature

The flexibility and loose coupling that Spring offers, with the
standardization of JPA persistence, provides developers with the best
of both worlds and gives them a platform that’s easy to develop on

and convenient to test”

“

21April 2007JDJ.SYS-CON.com

to provider. By defining common property names in Spring,
the settings can be specified regardless of the provider
implementation being wired in underneath. This facilitates
switching between different persistence providers by mini-
mizing configuration changes — something that can help
users determine which of the available providers exhibits
the best performance or can best meet their application
requirements.
 The following is the definition of the vendorAdapter bean
that we wired to the jpaVendorAdapter property. It defines
TopLink as the vendor and gives values to the three common
property settings.

 <bean id=”vendorAdapter” class=”org.springframework.orm.jpa.

 vendor.TopLinkJpaVendorAdapter”>

 <property name=”databasePlatform” value=”${platform}”/>

 <property name=”showSql” value=”true”/>

 <property name=”generateDdl” value=”true”/>

 </bean>

 The databasePlatform string is understood by the persis-
tence provider so even though the property name is common,
the values may be different across vendors. We have assigned
it the variable platform and defined it in an external applica-
tion context properties file. (See Professional Java Development
with the Spring Framework for a description of how to define
and use properties files.).
 Implementations such as TopLink define many more JPA set-
tings that can be used to configure the provider in ways ranging
from specifying what kind of cache to use to declaring custom
classes and mapping types. These additional properties are
typically defined as properties in the persistence.xml file.

Other Configurations
 The next thing we need to do is declare the BookInven-
torySystem class as a Spring bean. The simple bean defini-
tion merely points out that Spring should proxy and manage
instances of the class as they are created.

 <bean class=”org.bookguru.BookInventorySystem”/>

 Next, we’ll use the local resource-level transactions provided
by the JPA entity manager, so we define the transaction man-
ager bean and bind it to the JpaTransactionManager class. We
then refer its entity manager factory dependency to our entity
manager factory bean.

 <bean id=”transactionManager”

 class=”org.springframework.orm.jpa.

JpaTransactionManager”>

 <property name=”entityManagerFactory”

 ref=”entityManagerFactory”/>

 </bean>

 This transaction manager is designed to support
transactional connections through JPA but it will also
allow direct JDBC access using Spring’s JDBC abstraction
library.
 We need to do a bit of housekeeping to indicate to Spring
that it should honor and act on any @PersistenceContext
and @Transactional annotations found in bean classes.
This is done by adding the following two simple elements:

 <bean class=”org.springframework.orm.jpa.support.

 PersistenceAnnotationBeanPostProcessor”/>

 <tx:annotation-driven/>

 The tx namespace and schema should be added to the top
of the application context XML file so the namespace can be
recognized.

Testing
 Spring is designed to facilitate agile development practices
— particularly to make testing much easier than in traditional
Java EE development. The use of dependency injection and
POJO programming makes unit testing much easier in general,
but Spring doesn’t stop there.
 Spring provides a powerful integration test facility that lets
code that accesses persistent data be tested without deploying
to an application server or any container other than Spring.
This functionality is packaged in the spring-mock.jar file
included in the Spring distribution and provides the following
services:
• Automatic transaction demarcation. Each test runs in

its own transaction, which is rolled back by default. This
ensures that each test can run in its own sandbox without
producing side effects.

• Caching configurations. A configuration such as the O-R
mappings is loaded only once, ensuring that start-up costs
aren’t repeated for each and every test.

• Dependency injection of test cases. Test cases can be
injected just like application components, making them
easier to develop and initialize.

 Taken together, these services mean that tests can be written
quickly and easily, and executed in seconds. The following
example shows how easily we can test our book inventory
system.
 We extend Spring’s AbstractJpaTests superclass, which
is a subclass of JUnit TestCase, and then we specify the test
fixture and configuration location. The test fixture will be
automatically dependency-injected if we provide a setter
method. We can provide any number of setter methods,
but it’s usually good practice to test one thing at a time.
We must implement the getConfigLocations() method to
return an array of the Spring configurations we want to
load. Note that most of the configuration data is identical

Spring is designed to facilitate agile development practices –
particularly to make testing much easier than in traditional Java EE development”“

JDJ.SYS-CON.com22 April 2007

to that used in a deployed scenario, minimizing the amount of
additional work needed to implement tests:

package org.bookguru;

import org.springframework.test.jpa.AbstractJpaTests;

public class BookInventorySystemTest extends AbstractJpaTests {

 private BookInventorySystem bookInventorySystem;

 public void setBookInventorySystem(

 BookInventorySystem bookInventorySystem) {

 this.bookInventorySystem = bookInventorySystem;

 }

 protected String[] getConfigLocations() {

 return new String[] {“/my/path/my-spring-config.xml”};

 }

}

 Now we can add any number of test methods. These can access
data by using our data access object (DAO) fixture or the jdbc-
Template and sharedEntityManager instance variables inherited
from JpaTestCase as follows:

 public void testAddBook() {

 int oldBookCount = jdbcTemplate.queryForInt(

 “SELECT COUNT(0) FROM BOOK”);

 bookInventorySystem.addBook(12769356, “War and Peace”,

 “Leo Tolstoy”, Genre.FICTION);

 sharedEntityManager.flush();

 int newBookCount = jdbcTemplate.queryForInt(

 “SELECT COUNT(0) FROM BOOK”);

 assertEquals(“Must have added new row in BOOK table”,

 oldBookCount + 1, newBookCount);

 }

 Here we’re using JDBC queries in the same transaction to verify
the correct behavior of our DAO. First we query for the number of
rows in the BOOK table. Then we add a book, being sure to flush
the current unit of work, using the EntityManager.flush() method.
This forces the persistence provider to issue the necessary SQL up-
date. Now we can issue another JDBC query to verify that we added
an additional row. We know that our DAO doesn’t merely execute
without exception, but also causes the appropriate changes in our
database. Those changes will be rolled back when the testAdd-
Book() method has completed, so the changes won’t be persisted
or affect other tests.
 With this approach, we can very quickly validate our O-R map-
pings and queries, as well as our Spring configuration. Very quick
round trips mean that we can rapidly iterate as we enrich and
map our domain model, identifying any problems early so that
they take minimal time to rectify.

Best Practices
 As we see from the example, most of the effort to develop JPA in
Spring is in the initial configuration setup. Once we get the applica-
tion context settled, the rest is just a matter of simple programming

as we add more classes and beans. When working with multiple
Spring/JPA projects it helps to have a template XML file that can
be copied and modified as needed. If a specific architecture and
pattern is commonly used, it may make sense to have a JPA-specific
bean definition file and just file-include it in the application context
file for every project. (Note that Spring allows a configuration to be
split into any number of XML files.)
 In the past, each persistence implementation had a different ses-
sion API, and using a Spring template/DAO was helpful because it
let Spring manage session-level resources and insulate the program
from the vendor API. JPA is a standard API, so there’s no longer a
need to do this kind of shielding. In Spring 2.0 the entity managers
are managed for you, so although Spring supports the same kind of
DAO templates for JPA, they’re no longer as necessary.
 Spring DAOs also provide exception translation by mapping
the various platform and database exceptions into a consistent
Spring exception hierarchy. This provides the application with a
normalized, unified exception-handling scheme, regardless of the
particular database sitting underneath. In Spring 2.0 this facility
is made available through the @Repository annotation, without
requiring the use of DAO/template objects. Because there’s cur-
rently no standard way for database exceptions to be wrapped in a
JPA PersistenceException, this annotation will help applications
process persistence exceptions and map them to specific causes. It’s
also particularly valuable for existing Spring applications that will
migrate from proprietary data access APIs to JPA, or for mixing JPA
and JDBC use in the same application.
 As in any Spring application, using Spring with JPA ensures a con-
sistent and testable programming model, whether you’re deploying
to a Java EE application server, a Web container such as Tomcat, or a
standalone application.

Summary
 In this article we’ve shown how to use JPA in new or existing
Spring applications to achieve standardized persistence, with little
effort or change in coding style. New Spring users can begin writing
applications and bring their JPA experience with them. The flexibil-
ity and loose coupling that Spring offers, with the standardization
of JPA persistence, provides developers with the best of both worlds
and gives them a platform that’s easy to develop on and convenient
to test.
 The JPA Reference Implementation can be downloaded from
http://otn.oracle.com/jpa, and Spring 2.0 can be downloaded from
www.springframework.org/download. To learn more about using
JPA with Spring, see the Spring JPA documentation at http://static.
springframework.org/spring/docs/2.0.x/reference/orm.html#orm-
jpa.

References
• Mike Keith and Merrick Schincariol. Pro EJB 3: Java Persistence

API. Apress, 2006.
• Rob Harrob and Jan Machacek. Pro Spring. Apress, 2005.
• Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas Risberg,

Colin Sampaleanu. Professional Java Development with the
Spring Framework. Wrox, 2005.

• Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy
Kopylenko, Mark Pollack, Thierry Templier, Erwin Vervaet, Portia
Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau, Rick
Evans, Spring Framework 2.02 Reference Documentation. 2007.

Feature

JDJ.SYS-CON.com24 April 2007

esigning and developing effec-
tive Business Process Manage-
ment (BPM) solutions in con-
junction with IBM’s WebSphere

MQSeries Workflow product involves an
examination and thorough understand-
ing of the multiple facets involved as
the technical solution is being built and
the business processes that serve as the
foundation pillars of the execution of the
business process model. In light of our
fast-paced society and ever-demanding
customers, rapidly interconnected mar-
kets, and wave of market globalization,
it’s essential for businesses to conduct
their transactions efficiently.
 One of the interesting facts to observe
is that as technological advances and
improvements occur, they change our
perception of how to conduct business
communications and transactions both
from the business owners’ point-of-view
and the customer’s. As I have said, “Ad-
vances in technology and the ubiquity
of the Internet have realigned the way in
which business functions.”
 The number of customers that are
taking advantage of the Internet and its
commerce-related benefits increases as
technology and its use
is simplified. Customer fingers increas-
ingly find their way around a keyboard
to type the URL of a company they want
to do business with, rather than pick-
ing up the phone or reading through a
brochure. This “change” is one of the
reasons why businesses today need
to compete harder than ever to satisfy
customer demands.
 Traditionally, the process of software
engineering means technical engineers
collaborating with business to write qual-
ity applications that help the customer
conduct business more efficiently. So for
example, if in the past, it was difficult for
John Smith, Inc. to maintain an audit trail
of all its transactions including the digital
images of invoices, now with the assis-
tance of powerful technology, technical
engineers can produce quality apps that
do that and more. After all, engineer-

ing software is traditionally based on a
certain set of rules and conditions that,
in most cases, preserves its form func-
tionality as “fixed” or “non-adaptive.” In
other words, if a business is successful in
doing the same kind of transactions day
in and day out, an application developed
for it today might still help it thrive five
years from now. Where we start to see is-
sues is when business processes have to
be able to “adapt.” This is where the ap-
propriate management of how business
is conducted comes into play and so the
engagement of Business Process Man-
agement concepts, tools, and techniques
becomes a more lucrative discussion and
investment choice for businesses that
want or need to better understand, track,
and make their day-to-day operations
more efficient.

The Effects of ‘Change’ on a
Business Organization
 Change can be a difficult and un-
popular topic to address depending on
an organization’s culture and history.
Some businesses have been conduct-
ing their daily operations the same way
for the past 10, 20, even 30 years with
little or no change, so when changes,
especially technological changes, come
about, they impact both employer
and employees. And naturally every
employer wants its employees to have a
good, productive working environment.
It’s expensive for an employer to have
its best workers concerned about their
future because of that “new applica-
tion” or “new technological method or
tooling,” which is more efficient, but
also new. Employers may sometimes

find that because of change, employee
morale declines and the stress level runs
high. Clearly when you start thinking
of change from certain organizational
perspectives, it can be a challenge to
accept, initiate, maintain, and promote
it within an organization.
 Business Process Management as a
concept provides a skeletal framework
on which your applications can drive
their business goals. IBM’s MQ-
Workflow engine is an example of an
application that lets a business model,
simulate, and monitor its business
transactions or operations via a set of
interconnected relationships between
people, processes, and applications.
 One of the benefits of such applica-
tion building is that as your business
process “changes” it can be tracked
better and monitored for efficiency. The
degree and expense of changing the
backbone of a business (i.e., its business
process models) can be minimized and
so this very change can be perceived
as an adaptation rather than a radical
change.
 For example, suppose your business
process involves capturing mortgage
loan documents via imaging software
and making a call to a service in Japan.
And let’s say that that service in Japan
is increasingly expensive and you have
a bid from another vendor that might
do the same thing in Canada for half
the price. You can change your business
process model and replace or update
only that portion of the entire business
process chain. This is more effective than
to, say, rewrite the whole application
because one aspect of the business chain
was modified.
 As suggested above, another key item
to understand is that “change” should
be perceived as a form of “adaptation.”
As business owners and managers, bear
in mind that a new “tool” or “process” is
only good if it’s used effectively to ben-
efit the core initiatives of the business
organization. It can become increasingly
important to administer certain organi-

BPM Solutions

by Praveen K. Chhangani
Minimizing the Impact of Change

D
Effective Business Process Management with IBM WebSphere MQSeries Workflow

As a Certified IBM WebSphere

MQWorkflow Specialist and the

WebSphere Business Integration

(WBI) Practice Lead for SYSCOM,

Inc., Praveen K. Chhangani is part of

the company’s specialized team of

WebSphere consultants whom IBM

calls upon to service its most chal-

lenging customer requirements by

providing training, customization,

administration and configuring,

architecture design, development,

and deployment of distributed

architectures. He has several years

of experience and is well rounded

as a developer, analyst, administra-

tor and solutions architect. His

extensive experience with IBM

WebSphere MQSeries Workflow,

WBI Modeler, Monitor and Process

Choreography has proven invalu-

able in a full lifecycle of projects

from requirement analysis, process

design and automation, solution

design, development to testing

and mentoring for clients and

customers like Principal Financial

Group, MCI, State Farm Insurance

and others.

praveenchhangani@yahoo.com

25April 2007JDJ.SYS-CON.com

zation development interventions, mean-
ing find innovative ways through which
“change” is more acceptable.

Business Process Design & Architecture
 Every Business Process Model is a reflec-
tion of an organization’s business process,
and specifically how well the business
process is understood and captured for
process model design. This demands an
intense appreciation of the different aspects
of the organization’s business process and
regular operating functions. Before process
design it’s important to capture entities such
as people, process, and infrastructure into
relationships that form a workflow.
 As I’ve said before, “Workflow is a term
that’s typically used within the boundar-
ies of operations and people involved in a
given system. Most importantly, it revolves
today around aspects of business integra-
tion methodologies by promoting process
automation and business-level monitoring
in real-time while supporting fluctuations
in business growth.”
 Another aspect closer to the implementa-
tion level is the basis of your organization’s
architecture and management practices
around it. The amount of time invested in
building a robust and dynamic architecture

platform will be key to the success of the
business process and hence the organiza-
tion. Architectures aren’t what they used to
be, and our business models and drivers
aren’t either. As our business processes and
drivers grow more and more complex so
does the need to improve the underlying
architectures that support the models and
drivers. Or, as Michael Havey says, “A good
architecture uses the technique of divide
and conquer to reduce a difficult problem to
smaller, more manageable parts, and where
possible, it solves each part not by inventing
new technology but by reusing an existing
approach.”

Using IBM’s WebSphere
MQSeries Workflow
 While there is a host of business process
management development products avail-
able to meet your business needs, here I
intend to discuss IBM’s WebSphere MQSeries
Workflow product in conjunction with the
lifecycle of a project. The MQSeries Workflow
product allows for the effective technical
management of the integration of people,
processes, and IT infrastructure. When
used appropriately, and with strategic and
researched investments, the benefits can be
very rewarding. The flip side is that when it’s

used inefficiently or is improperly managed,
it can be a difficult technical management
exercise and impact your business. So I
intend to elaborate on some of its intricacies.

Managing Technical Resources and
Capacity Planning
 It’s necessary for project management
to help identify and declare the vast role
resources may have on the use of MQWork-
flow in conjunction with the requirements
of a project. In most cases MQWorkflow lies
at the heart of the overall application, and
hence can be a complex service to under-
stand, build, and maintain. The proper
planning of the various roles associated
with an MQWorkflow project and their
potential time allocations will help reduce
some common project problems. Planning
and preparing a resource for the right type
of work is just as important as the amount
of work that will be done by the resources.
Technical managers should be aware of
what’s involved in each role and how much
time is appropriate. For example, a company
may have a resource path that is segregated
to distinguish between an MQWorkflow
developer and an MQWorkflow admin-
istrator. Another company might seek to
have both roles fulfilled by one person. The

JDJ.SYS-CON.com26 April 2007

proper delegation of roles is necessary and
comes from understanding the nature of
the project and how MQWorkflow is being
used. Many MQWorkflow developers have
vast expertise. Properly identifying the
experience desired for a specific project will
enable higher efficiency and more produc-
tivity. Another aspect of this is maintaining
resource capacities by having the necessary
resource backups.

BPM Software Development, Testing,
and Coordination Management
 If your company project is planning on
using MQSeries Workflow, it’s essential to
understand the nature of how develop-
ment, testing, and coordination efforts are
done during the course of your project’s
lifecycle. If your perception as a project/
technical manager is that your company
isn’t set technically up to have a stream-
lined process of providing MQWorkflow
services to developers for development
and testing their business processes, take
the time to collaborate with your peers and
both project and service management, and
consider investing some time in construct-
ing a core set of services facilitated by the
combination of company staff and techni-
cal products.
 As we learned above, many businesses
go through change to keep costs down
and compete effectively and the constant
change pressures management personnel
to, at times, focus entirely on the busi-
ness customer and his needs. While this is
perhaps the most important thing to focus
on, take a step back once and a while and
consider whether or not your company is
set up with the appropriate infrastructure
to provide the services being promised to
business partners and customers. Every
now and then we tend to see a reflection of
this, or the lack of it, in projects that didn’t
plan properly initially, and although they
successfully built and deployed business
process models into production were
unable to spend adequate time looking
at other aspects of building an effective
workflow support competency center in
the company. This is an important issue,
and should be understood and effectively
communicated to appropriate company
sectors. Lack of this “backbone” can lead
to application performance problems,
support issues, service level agreement vio-
lations, and a lot of costly time spent fixing
technical problems rather than benefiting
from the fruit of the IT solution.
 A few things to consider here are that

projects should work with service teams
and areas in a collaborative environment
to baseline project and service expecta-
tions. Neither the project or service area
alone would be able to succeed on its
own, without a collaborative-style com-
munication pattern. So ensure adequate
IT infrastructure and staff are in place to
promote a healthy development, testing,
and execution environment.

Technical Communications and
MQWorkflow
 Communication should be a central part
of the Workflow project’s focus. Effective
communication patterns between project
and service analysts and direction and
technical analysts will increase awareness
of the technical focus, outstanding issues,
potential risks, and other necessary dimen-
sions of the workflow project that require
an almost “radar-like” interception. Being
able to escalate necessary items quickly
and effectively, and dissolve, deprecate,
or postpone unnecessary ones will come
from effective communication patterns.
 One thing to consider here is that com-
munication should be involved, yet role-
centric. Typically, every workflow subject
matter expert (SME) has a certain level of
expertise in specific segments of the prod-
uct technology. Developing a knowledge
plan of which resources are most effective
and when is essential and can be benefi-
cial in the long run. It used to be the case
a few years ago that there were a limited
number of subject matter experts who
were well-rounded and able to leverage the
use and benefits of the MQSeries Work-
flow product. This is changing and we’re
seeing a more diverse and experienced
community providing services. Being able
to capture various resource experiences
and learn from them in an effort to better
position our projects and service team
goals will promote efficiency and heighten
productivity.

Technical Observations and
Recommendations
 It should be the goal of every MQWork-
flow developer, administrator, architect,
systems designer, and general subject
matter expert (SME) to ask questions
of themselves and other subject mat-
ter experts regarding the use of the IBM
WebSphere MQSeries Workflow product
in their organizations. Specifically, how
the product is being used and what can
be done to improve on applications that

may have already been built, as well
as on-going and future development
milestones. Taking the time to cover es-
sential topics and facilitate collaborative
sessions between the appropriate subject
matter experts provides the kind of direc-
tion and guidance around the product
that promotes a sense of its use, tailored
specifically to an organization’s needs
respecting business process management
and development initiatives. Below are
some technical observations and recom-
mendations I’d like to make that may
benefit you and your organization.
1. Drive for a best-case scenario, but

 have a pro-active plan in case the
 worst happens.

2. Ensure that MQSeries Workflow
 is being appropriate leveraged for
 the benefit of the organization.
3. Ensure that effective communica-
 tion is a central theme and project

 focus for higher productivity.
4. Ensure that the proper standardi-
 zation of the workflow runtime

 database and its maintenance are
 catered to.

5. Ensure that product’s features are
 well researched and evaluated by

 technical and direction teams
 before implementation.

6. Every business process is different.
 Ensure that the appropriate invo
 cation method of the workflow

 service is being used at the appro-
 priate times (i.e., the use of the

 XML interface versus APIs).
7. Equip the business process models

 with enough error-handling logic
 and procedures.

8. Use properly documented func-
 tion variables during development

 stages (i.e., _RC). When possible,
 try to limit the proliferation of

 condition expressions in the pro-
 cess model. Too many make the

 model difficult to understand and
 tricky to adapt and test.

9. Make use of the display functional-
 ity (as part of the product during

 runtime), but insert variable
 elements in the description field
 during development.

10. Devise good architecture plans.
 Evaluate whether your process

 models are being built for speed,
 flexibility, user friendliness, etc.

11. Consider running batch processes
 on different workflow configura-

 tions from user-driven workflows.

BPM Solutions

27April 2007JDJ.SYS-CON.com

 For example, batch might put a million messages
 in the queue and so require more processing time.
 In the meantime, if the UI-driven flow performs
 an action on the screen that also puts a message
 in the same queue, there may be an issue with
 response time. Plan for such situations ahead of
 time.
12. Sub-processes are expensive from the standpoint of
 performance. However, their use sometimes out
 weighs the performance impact.
13. During various testing levels, whether iterative or

 waterfall, it may be good to maintain detailed
 spreadsheet tracking, various test cases, test dates,
 FDL versions, etc.
14. Ensure that the various technical environments are all

 configured the same way when needed, especially
 when it comes to security.
15. Build a backup id of the almighty product administra-

 tion id ‘ADMIN.’ This is a key item and may be impos-
 sible to recover in certain catastrophic situations.
16. Ensure that proper source code management proce-
 dures are in place.
17. Ensure that appropriate source code is being deployed.

 It’s very important to scan FDL before deploying it for
 potentially unhealthy items in the workflow server. For
 example, items in the domain FDL that may overwrite

 server configuration settings.
18. Perform a Basic Workflow Unit Test (BWU) on your

 FDLs to understand how expensive they are from a per-
 formance standpoint.
19. When migrations are done, make sure that you have

 contingency plans so you can recover from any
 problems.
20. Ensure that a proper segmentation strategy is in place

 for MQWorkflow.
21. Ensure that all changes made to the process models are

 tracked via defects, issues, etc. It’s also a good
 idea that a comment, version number, and author ini-

 tials are inserted into the description field next to
 every change to make for better clarity of process tem

 plate names at runtime.
22. Consider using an audit trail in your process modeling.

 Depending on the nature of the project, an audit
 trail may help management make better business
 decisions.
23. If you make several changes to the process models and

 deploy several versions on a regular basis, make sure
 you use of the Process Template Delete utility provided
 by IBM.

24. Use user-friendly icons in your business process model.
25. Use the FMCINTERNALNOOPs for decision-based
 routines, but make sure that each use is valuable and
 not simply cosmetic.
26. Don’t pass large chunks of data from activity to activity

 in your process model.
27. Have scheduled code reviews and adaptation/improve -

 ment seminars for your process models.
28. Allocate enough time for mentoring sessions for new

 employees, resources.
29. It’s a good idea to do an overnight FDL extract on your

 workflow server. Take that capture and store elsewhere
 for disaster recovery and archival purposes.
30. Promote active participation within the workflow tech-

 nical community and as a workflow analyst bring up
 technical issues you may face with the technical and
 direction teams that might be available at your com-
 pany. Being able to help identify loop-holes in the

 technology sector can be extremely beneficial to
 you since it facilitates the notion of technical
 networking.

References
• Organization Development & Change. 8th edition.

Cummings & Worley.
• Peter F. Sorensen Jr., Thomas C. Head, Therese Yaeger,

David Cooperrider. Global and International Organization
Development. 4th Edition.

• Praveen K. Chhangani. “Creating a Healthy, Optimized
Workflow Environment.” WebSphere Developer’s Journal,
Volume 3, Issue 10.

• Michel Havey. Essential Business Process Modeling.
• Praveen K. Chhangani. “SOA and its Impact on EAI and

On-Demand.” WebSphere Developer’s Journal, Volume 4,
Issue 7.

• David L Copperrider, Peter F. Sorensen, JR, Therese F.
Yaeger, Diana Whiteney. Appreciative Inquiry.

JDJ.SYS-CON.com28 April 2007

he Java Platform, Enterprise Edi-
tion, or Java EE, is the most popular
middleware platform for developing
and deploying enterprise applica-

tions. Java EE offers developers a choice of
vendors, portability, scalability, and robust-
ness. However, it has been criticized for
its complexity and its need for a lot of re-
dundant and procedural code. In addition,
lightweight frameworks such as Spring and
scripting platforms such as Ruby on Rails
have emerged to challenge the platform’s
supremacy in the middleware world.
 In response, the Java Community
Process has made great efforts to simplify
the developer’s life with Java EE’s latest
incarnation: Java EE 5. Innovations such as
radically simplified models for Enterprise
JavaBeans (EJB) and Web services have
changed how enterprise applications
are built using Java EE 5 technologies.
Combining the robustness of the Java EE
platform with lightweight frameworks
such as Spring further enables developers
to rapidly develop portable, maintainable
enterprise applications.
 In this two-part series, I will discuss
how Java EE 5 simplifies enterprise ap-
plication development, then uncover how
you can utilize the Spring Framework to
fill the gaps left by Java EE 5.

Simplified Programming Model
with Java EE 5
 Java EE 5 radically simplifies the devel-
opment of enterprise applications by:
• Adopting a plain old Java object (POJO)

programming standard and setting
intelligent defaults for EJB components

• Eliminating the need for deployment
descriptors and using Java metadata
annotations for deployment settings
instead

• Introducing a simplified POJO persis-
tence model similar to Oracle TopLink
and JBoss Hibernate

• Using dependency injection instead
 of the Java Naming and Directory

Interface (JNDI) to locate resources
 and EJB components

 Let’s briefly examine these changes.

Simplified Persistence
 Most developers who used the EJB 2
container-managed persistence were
disappointed with its complexity and
performance. As a result, POJO persis-
tence frameworks such as Hibernate and
TopLink became popular, compelling the
Java Community Process to standardize a
persistence API for the Java platform on a
POJO persistence model.
 If you’ve used an object-relational
(O/R) mapping framework to build the
persistence tier of your application, you’ll
notice that each framework provides three
facilities:
• A declarative way to perform O/R map-

ping. This method, called O/R mapping
metadata, lets you map an object to
one or more database tables. Most O/R
frameworks use XML for storing O/R
mapping metadata.

• An API to manipulate entities (for
example, to perform create, read,
update, and delete – or CRUD – opera-
tions). The API lets you persist, retrieve,
update, or remove objects. Based on the
use of the API and the O/R mapping
metadata, the O/R framework performs
database operations on your behalf.
The API shields you from writing Java
Database Connectivity (JDBC) or SQL
code to persist your domain objects.

• A query language to retrieve objects.
This is one of the most important
aspects of persistence because improper
SQL statements may slow down your
database. A query language also protects
your applications from being cluttered
with proprietary SQL, and lets you
retrieve entities or objects without writ-
ing SQL SELECT statements.

 The EJB 3 Java Persistence API (JPA)
standardizes the use of persistence for
the Java platform by providing a standard

mechanism for O/R mapping, an Entity-
Manager API to perform CRUD opera-
tions, and a way to extend the EJB query
language (EJB-QL) to retrieve entities.

Introducing JPA Entities
 An entity is a lightweight domain object
– a plain old Java object that you want to
persist in a relational database. Like any
POJO, an entity may be either an abstract
or a concrete class, and it can extend
another POJO. You can use the @javax.
persistence.Entity annotation to mark a
POJO to be an entity, as shown in Listing 1.
 (The code examples that follow are
taken from my recently published book,
EJB 3 in Action, published by Manning
Publications.)
 I’ve used annotations to define the
mapping of entities to tables; you can
also use XML. It’s worth mentioning that
JPA provides support for rich domain
modeling capabilities such as inheritance,
and polymorphism. JPA supports several
inheritance mapping strategies: single
table, joined subclass, and table per class.
Unlike EJB 2 container-managed persis-
tence (CMP), JPA is simple and supports
automatic generation of primary keys.
 Now that you’ve seen an entity, let’s
examine how you can manipulate entities
by using the EntityManager API.

The EntityManager API
 The javax.persistence.EntityManager
manages entity lifecycles and exposes
several methods to perform CRUD opera-
tions on entities. JPA supports two types of
EntityManager: container-managed and
application-managed. The application-
managed EntityManager is really useful
when using JPA outside a container. Let’s
look at an example of using a container-
managed EntityManager to manage an
entity.
 You can use the persist() method to save
an instance of entity. For example, if you
want to persist an instance of Bid, use the
following code:

@PersistenceContext(unitName=”actionBazaar”)

private EntityManager em;

Enterprise

by Debu Panda

Spring and Java EE 5

T

Debu Panda, lead author

of the recently published

EJB 3 in Action (Manning

Publications), is a senior

principal product manager

on the Oracle Application

Server development team.

He maintains an active

blog on enterprise Java

at http://

debupanda.com.

debabrata.panda@
oracle.com

Part 1: Simplicity and power combined

 Figure 1 JNDI lookup vs. dependency injection

��

������������
��������������������
���������������������������
������������������

�����������������
���������������

����������������

����������������
�����������������������������

����������������������

�����������
��������������

�������������

����������

��������

����

�������������������������
�������������������������

�����������������

��
��
���
����������������

���
��
���
��

���
���

�����������������
��������������������������������

��

COPYRIGHT ©2007 SYS-CON MEDIA ALL RIGHTS RESERVED

JDJ.SYS-CON.com30 April 2007

...

Bid bid = new Bid();

bid.setItem(item);

bid.setBidder(bidder);

bid.setBidPrice(price);

em.persist(bid);

 Now that you have a sense of how easy
it is to use the persistence feature of EJB
3, we’ll examine how EJB 3 simplifies the
development of business components.

Simplified EJB 3 Components
 EJB 2 was one of the primary technologies
responsible for the complexities that have
plagued enterprise Java development. Some
detractors ridiculed it as a “fat elephant” for
its heavyweight nature. It required a lot of
redundant code, even to build a simple “Hel-
loWorld” EJB.
 EJB 3 simplifies development by adopt-
ing the POJO programming model, and
simplifies usage of EJB and resources by
using dependency injection. It also depends
heavily on intelligent defaults and makes the
deployment descriptor optional.
 Listing 2 provides an example of a simple
stateless EJB 3 session bean with a remote
interface. In this example, PlaceBidBean is a
simple POJO class that implements a regular
Java interface – or a plain old Java interface
(POJI). The @javax.ejb.Remote converts the
POJI to a remote interface and @javax.ejb.
Stateless converts the POJO to a stateless
EJB.
 You can use @Stateful and @Message-
Driven annotations to define stateful and
message-driven beans, respectively.

Dependency Injection
 With Java EE 5, invoking an EJB compo-
nent is a snap with dependency injection.
Dependency injection support in Java EE
5 was influenced by inversion of control
(IoC) containers such as Spring.
 Dependency injection is essentially
the opposite of the JNDI: the container is
responsible for looking up and instantiat-
ing an instance of an EJB or a resource.
Figure 1 depicts how dependency injection
compares with JNDI.

 For example, in Figure 1 you can invoke
the EJB from a managed component as
follows:

@EJB

private PlaceBid placeBid;

..

 Long bidId = placeBid.addBid(bid);

..

 Although Java EE 5 simplifies usage
resources and services by using dependency
injection, it is supported only on managed
classes such as Java servlets, listeners, and
EJBs, and not regular Java classes. Later I’ll
discuss how you can use Spring’s powerful
dependency injection features to fill that gap.
 Note that Listing 2 uses JMS Queue to
send messages. The @Resource annotation
injects an instance of JMS connection fac-
tory and destination, respectively, without
having to do a complex JNDI lookup. Usage
of JMS is fairly complex, but Spring simpli-
fies it with its JmsTemplate, as we will see
in the second part of this article.

Simplified Web Service
 Development of Web services was
incredibly complex with the Java API for
XML-based RPC (JAX-RPC), which was part
of earlier versions of J2EE. The Java API for
XML Web services (JAX-WS), part of the Java
EE 5 platform, simplifies the development
and invocation of Web services by using
annotations. You can easily expose any POJO
or stateless EJB as a Web service by using the
@WebService annotation. For example, you
can expose the PlaceBid EJB as shown in
Listing 3.
 If you have used Web services in J2EE 1.4,
you’ll realize how simple it is to develop Web
services in EJB 3!
 The invocation of Web services was also a
complex task with J2EE 1.4. Java EE 5 simpli-
fies it by using @WebServiceRef annotations,
as shown here:

@WebServiceRef(wsdlLocation=”http:

//localhost:8888/PlaceBidService/

PlaceBidService?WSDL”)

 private static PlaceBidService placeBid

 Service;

 actionbazaarplacebidservice.

PlaceBidBean placeBid = placeBidService.

 getPlaceBidBeanPort();

 System.out.println(“Bid

Successful, BidId Received is:” +placeBid.

addBid(“idiot”, Long.valueOf(1), 2000005.50

));

 Again, however, @WebServiceRef injection
is only supported with managed classes and
cannot be used from regular Java objects.
 In the first half of the article, I discussed
how Java EE 5 simplifies development
of enterprise Java applications. Now I’ll
explore how you can use Spring to address
limitations in Java EE.

Integrating the Power of Java EE 5
and Spring
 The Spring Framework provides a light-
weight container with functionality that
simplifies the development of applications.
Although many view Spring as an alterna-
tive to Java EE, most customers use it as a
framework and deploy Spring-based ap-
plications into a Java EE container such as
Oracle Containers for J2EE (OC4J).
 Spring simplifies resource access by
using dependency injection, and simplifies
database access by using a template-based
approach. In this section, I’ll take a look at
these capabilities.

JPA and Spring
 Spring has wide support for data access
that includes popular object-relational map-
ping (ORM) frameworks, including Hiber-
nate and TopLink. Spring takes a data access
object (DAO) approach to coding, allowing
developers to use these ORM options and
switch between them easily. While JdbcTem-
plate makes database access using JDBC
simpler, Spring 2.0 has built-in integration
with JPA, and it ships TopLink Essentials (the
reference implementation of JPA derived
from Oracle TopLink in Sun’s GlassFish
project) as the default JPA provider.
 While Spring supports container-man-
aged EntityManager as a lightweight
container, it simplifies usage of JPA with
JpaTemplate. Table 1 shows several Java
interfaces for using JPA in Spring.
 Spring enables you to access and ma-
nipulate entities either using JPA directly or
using JpaTemplate. I will now demonstrate
how to use JPA from applications using Jpa-
Template. Listing 4 shows a DAO implemen-
tation class using JpaTemplate.
 You can use the JpaTemplate methods
to access entities. Spring really simplifies
some of the repetitive usage of EJB 3 JPA. For
example, if you want to use a dynamic query
to retrieve all bids for an item, you can use
the JpaTemplate to produce this:

List bids = getJpaTemplate().find(

 “SELECT b FROM Bid b WHERE

b.item = ?1”,item);

Enterprise

 Table 1 Spring classes supplied for JPA

Spring Class Purpose
JpaTemplate Simplifies JPA access code
JpaDaoSupport Super class for Spring DAO

LocalEntityManagerFactoryBean Factory that creates local entity
 manager when JPA inside Spring
 container
JpaDialect Used with a persistence provider
 outside Java EE

����������������
�������������������������������

COPYRIGHT ©2007 SYS-CON MEDIA ALL RIGHTS RESERVED

������������������������������
���

��

������������������������
����������������������������

�������������������������������

��������������������������������

����������������������������������

����������������������������

�������������������

������������������������������
��������������������������

�����������������������������

���������������������������������

��������������������������

������������������

���������������������������������

�����������������������������������

�������������
�������

���

�������������������

������������������������
���������������

������

� �� ����������������
� � ����������

� �� ����������������
� � �������������

� �� �����������
� � ��������������������
� � ����������

� ��� ������������������������
� � ��������������������
� � ������������������������������������

���� �����������������������
� � �������������

���� ����������������
� � �����������������������
� � ���������������������������������
� � ������������������������������

���� ��������������������������
� � ���

���� �������������������
� � ����������������������
� � ������������������

��������������

���������������
�����������������������

���������������������

� ��� ���������� �
� �������������
� � �����������

������������������

��
���
��

���
��
��
����������������������������

��
��
��
��
���
���

���
��

����
��������

����

����������

����������
����������������������

����������������

�
������������

�
�������

�
�������������

�
�����������

� ������������

�
����������������

� ���

�
����������

�
������������

� ���

�
����

�
�������

� ��������������

���������������

�����������

�
�����������

� ����������������

�
���������������

�
�����������������

�
��������������������

�
������������������

� �����������

�
����

�
�����������������������

�
����������������������

�
���������������������

�
�����

�
�����������������������

����������

����������
����������������������

��

��
����������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
��������������������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
����������

��
����������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
��������������������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
����������
����������

����������
����������������������

������������

�������������������������������������
����������������������

����������
�������������������������������

����������������������������

���
���

��

���

������������������������������

��������
������������

������������������������

��
������������������������

��������
����

3

JDJ.SYS-CON.com32 April 2007

 The equivalent code, if you use the
EntityManager API, will look like this:

List bids = em.createQuery(

 “SELECT b FROM Bid b

WHERE b.item = ?1”)

 .setParameter(1,item)

 .getResultList();

 The real power of Spring comes
from how it configures services via
dependency injection. To use JPA with
Spring, you need the configuration
shown in Listing 5.

 JPA is not the only cool thing about
EJB 3; there is more meat in it, and
there are more integration points
between Spring and EJB 3 that we will
discover in the next part of this series.

Conclusion
 In this article, you learned how
Java EE 5 simplifies the develop-
ment of enterprise-level applica-
tions. You saw examples of JPA
entities, EJB 3 session beans,
and a simple JAX-WS Web service.
All these components are POJOs

and make heavy use of annota-
tions. JPA greatly simplifies
the building of persistence
applications.
 The Spring Framework 2.0 has
not only integrated with JPA, but
also greatly simplifies usage of JPA
by using JpaTemplate. In the next
part of the series we will discover
how the Spring Framework inte-
grates with other components such
as an EJB, Java Message Service
(JMS), and transaction manager.
Stay tuned!

Enterprise

Listing 1: A sample entity
@Entity
@Table(name=”BIDS”)
public class Bid implements Serializable {
 @Column(name=”BID_DATE”)
 private Date bidDate;

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 @Column(name=”BID_ID”)
 private Long bidId;
 @Column(name=”BID_PRICE”)
 private Double bidPrice;
 @ManyToOne
 @JoinColumn(name=”BID_ITEM_ID”,
 referencedColumnName=”ITEM_ID”)

 private Item item;
 private BidStatus bidStatus;
 … public Bid() {
 }

 public Long getBidId() {
 return bidId;
 }

....}

Listing 2: A sample EJB 3 session bean
@Remote
public interface PlaceBid {
 Bid addBid(Bid bid);
}

@Stateless
public class PlaceBidBean implements PlaceBid {
@Resource(name = “jms/BidQueue”)
 private static Destination destination;

@Resource(name = «jms/QueueConnectionFactory»)
 private static ConnectionFactory;

public PlaceBidBean() {
 }

public Bid addBid(Bid bid) {

}

 }

Listing 3: Simple EJB 3 Web service
@WebService(serviceName=”PlaceBidService”,
 targetNamespace = “urn:ActionBazaarPlaceBidService”)
@SOAPBinding(style = SOAPBinding.Style.DOCUMENT)
@Stateless
public class PlaceBidBean {

 @WebMethod

 @WebResult(name = “bidNumber”)
 public Long addBid(String userId,

 Long itemId,
 Double bidPrice) throws BidException {
 ..
}

Listing 4: DAO class using JpaTemplate
public class BidSpringEAO extends BasicSpringEAO implements BidEAO {

 public Bid addBid(Long itemId, String bidderId, double bidPrice) {
 Bid bid = new Bid();
 Item item = (Item)this.getJpaTemplate().find(Item.class,itemId);
 bid.setItem(item);
 bid.setBidPrice(bidPrice);
 bid.setBidStatus(BidStatus.NEW);
 Bidder bidder = (Bidder)getJpaTemplate().find(Bidder.
class,bidderId);
 …
 bid.setBidder(bidder);
 this.getJpaTemplate().persist(bid);

 return bid;
 }

 }

Listing 5: Spring configuration for using JPA
<bean id=”entityManager”
 class=”org.springframework.jndi.JndiObjectFactoryBean”>
 <property name=”jndiName”>
 <value>java:comp/env/actionBazaar</value>
 </property>
 <property name=”resourceRef”>
 <value>true</value>
 </property>
</bean>

 <bean id=”bidService” class=”actionbazaar.buslogic.BidServiceBean”>
 <property name=”bidEAO”>
 <ref bean=”bidEAO”/>
 </property>
 <property name=”itemEAO”>
 <ref bean=”itemEAO”/>
 </property>
 </bean>

 <bean id=”bidEAO”
 class=”actionbazaar.persistence.eao.BidSpringEAO”
 autowire=”byType”>
 <property name=”entityManager” ref=”entityManager”/>
</bean>

���������������������������

����������������������������������

��������������������������������

���������������������������

����������������������������������

�������������

������������������������������
�����������������

���� ����

��

������
����

��������
���������

���������������������������
�������������������������

��������������������
�������������

�����������������������

���� ���������������������������������

�����������������
�����������

����������������
��������������

���������

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 Cover II

 Extentech http://extentech.com/itsg 415-759-5292 9

 Infragistics www.infragistics.com/jsf 800-231-8588 4

 InterSystems www.intersystems.com/ja1p Cover IV

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 33

 JavaOne www.java.sun.com/javaone 23

 Jinfonet Software www.jinfonet.com/live 240-477-1000 7

 Northwoods Software Corp. www.nwoods.com 800-434-9820 27

 Oracle www.oracle.com/middleware 800-ORACLE-1 11

 SOA and EOS 2007 Conference & Expo www.soaworld2007.com 201-802-3020 31

 Software FX www.softwarefx.com 561-999-8888 Cover III

 Virtualization Conference & Expo 2007 www.virtualizationconference.com 201-802-3020 29

 VX30 www.vx30.com 866-661-5699 25

JDJ.SYS-CON.com34 April 2007

nterested in getting the latest on Java tech-
nology standards at the 2007 JavaOne Con-
ference? A great opportunity is awaiting you
because the show has a lot to offer this year

too. There are over 60 events – technical sessions
(TS), Birds-of-a-Feather meetings (BOF), and
Hands On Labs – based on Java specifications
developed or in development through the JCP.
Here are a few of them presented by none other
than the Spec Leads.
 JSR 296: The Swing Application Framework is
the topic of TS-3942. Joshua Marinacci and Hans
Muller, both of Sun Microsystems, will present the
advantages developers will be able to draw from
having a standard architecture for desktop applica-
tions included in the Java platform. At the end of its
development road, this specification will define a
simple application framework for Swing applica-
tions. Another Swing-related session is Swing in a
Multithreaded World, TS 3565, from which you will
learn about best practices and common patterns
in writing multithreaded desktop applications.
 Another JSR-based session is TS-4225, What’s
New in the Java Portlet Specification 2.0 (JSR
286)? IBM’s Stefan Hepper and Sun’s Wesley
Budzjwojski will present the functionality that
will be added to the new portlet specifications. If
you want to learn about the major new concepts,
such as coordination between portlets, serving
resources through the portlet, supporting AJAX use
cases with portlets, portlet filters, and validation-
based caching, plan to attend. The session will also
cover other small but important changes and the
alignment with the new version of Web Services for
Remote Portlets (WSRP 2.0) and Web frameworks
such as JavaServer Faces technology.
 If you are into developing mobile applications
that integrate Web services or are planning to start,
bookmark TS-5188 Web Services to Go: Mobile
Access to Web Services with JSRs 279 and 280. Spec
Leads from Nokia and BenQ will present how JSRs
280 (XML API for Java ME) and 279 (Service Con-
nection API for Java ME) will help with interacting
with Web services from mobile devices by adding
platform support for XML and Web services, creat-
ing a new mobile Web services ecosystem. JSR 280
provides a general-purpose API for XML processing,
extending JSR 172 and adding Streaming API for
XML (StAX) and Document Object Model (DOM)
parsing. JSR 279 is building on JSR 280’s XML API
and provides a framework for straightforward ac-
cess to networked services, incorporating support
for service discovery, authentication, and identity.

 A project recently submitted to the JCP, JSR
311, will be showcased in TS-6411, The Java API
for RESTful Web Services. The spec leads will
talk about the goal of the Java API for RESTful
Web services, which is to provide a high-level
declarative programming model for such services
that is easy to use and encourages development.
Services built with the API, the spec leads will
show, will be deployable by use of a variety of
Web container technologies and will benefit from
built-in support for a variety of HTTP usage pat-
terns and conventions.
 If you’re looking for a brief REST primer and an
update on the progress of the JSR 311 to date, this is
the session for you. The Spec Leads will outline the
current API design and highlight issues currently
under discussion by the expert group. Live code
demonstrations will illustrate the API discussion.
 Michal Cierniak, of Google, and Alex Buckley,
of Sun Microsystems, partner to bring us a BOF
session about the Modularity in the Next-Genera-
tion Java Platform, Standard Edition (Java SE):
JSR 277 and JSR 294. The two Java Specification
Requests (JSRs) are targeted to be delivered as a
component of the Java Platform, Standard Edition
(Java SE) 7.0. JSR 294 sets out to define the mod-
ules for development, and JSR 277 to define the
modules for deployment. The specifications set
out to address many issues including those associ-
ated with Java Archives (JARs), including the lack
of version control, the difficulties in distributing
multiple JARs for deployment, the classpath hell,
JAR hell, and extension hell, and so on, which have
been well known to many developers on the Java
platform for years.
 Gavin King of Red Hat Middleware, Spec Lead,
and Bob Lee of Google, Expert Group member, will
give a Web Beans update in TS-4089. JSR 299, Web
Beans, aims to unify the JavaServer Faces technol-
ogy-based managed bean component model with
the Enterprise JavaBeans (EJB) component model,
resulting in a significantly simplified program-
ming model for Web-based applications. The two
plan to provide attendees with background on the
Web Beans effort, give an update on Expert Group
membership, and outline the purpose and scope
of the Web Beans specification, the Web Beans
programming model, the impact on other JSRs:
EJB 3 architecture; JavaServer Faces platform; Java
EE. If you are interested in the current status of JSR
299 and the open issues with which the Spec Lead
and Expert Group members are confronting them-
selves, plan to attend this session.

 Developers who have tracked Java Business In-
tegration aka JBI will want to bookmark BOF-8872
driven by Peter Walker of Sun and Mark Little of
Red Hat Middleware. The session brings together
members of the Java Business Integration (JBI) 2.0
Expert Group, members of the Open ESB com-
munity, and others interested in finding out more
about JBI 2.0 and its progress to date to discuss pri-
orities and directions for work within the context of
the JSR. A related technical session is TS-8216, Why
do I need JBI when we have BPEL?, presented by
Sun’s Peter Walker and Andreas Egloff. Expect the
session to tackle one of the most popular questions
posed to the JBI team at last year’s JavaOne Confer-
ence: Does JSR 208, Java Business Integration (JBI),
compete or overlap with the Business Process
Execution Language (BPEL)? The session will also
address some common questions and misconcep-
tions about how to best utilize JBI and how differ-
ent users can get started on benefiting from JBI.
 In December 2006 the Spec Leads and Expert
Group of JSR 248, Mobile Services Architecture,
finalized the standard. At this year’s JavaOne, Kay
Glahn of Vodafone and Miklos Kelen of Nokia will
be presenting the session JSR 248: Taking Java
Platform, Micro Edition (Java ME) to the Next
Level, showcasing experiences with the completed
JSR 248, and covering the specification already
published and the status of its industry acceptance.
If you want to get a JSR 248 post release update and
an overview of the latest 248-compliant mobile
devices, then you should plan to attend this session.
 If you’re looking for a hands-on lab on real-time
Java programming, you’ve got your chance with
LAB-7250, The Real-Time Java Programming
Challenge: How to Build Real-Time Solutions
for Real-World Devices. Greg Bollella and David
Holmes, of Sun Microsystems, will demonstrate
that Java is ready for real time and will challenge
participants to see for themselves by building their
own real-time Java application.
 The lab is based on JSR 1, The Real-Time Speci-
fication for Java (JSR 01), which provides several
key application interfaces that enable developers
to create programs with predictable timing and
deterministic program execution.
 This is just a selection of the JSR-based sessions
JavaOne has in store for you this year; the list goes
on and on. I encourage you to go to the JavaOne
Conference page at http://java.sun.com/javaone/
sf/index.jsp, click on Content Catalog, and
start bookmarking your portfolio of preferred
sessions.

JSR Watch

Onno Kluyt

JSR Bookmarks at the
2007 JavaOne Conference

I

Onno Kluyt

is the director

of the JCP

Program at

Sun Microsystems

and Chair of

the JCP.

onno@jcp.org

Embed the world’s fastest object database.
A golden opportunity to make Java applications richer.
When you embed Caché in your applications, they become more valuable. Caché dramatically
improves speed and scalability while decreasing hardware and administration requirements.
This innovative object database runs SQL queries faster than relational data-
bases. And with InterSystems’ JALAPEÑO™ technology for Java developers,
Caché eliminates object-relational mapping. Which means Caché doesn’t just
speed up the performance of applications, it also accelerates their development.
Caché is available for Unix, Linux, Windows, Mac OS X, and OpenVMS – and it is deployed
in more than 100,000 systems ranging from two to over 50,000 users. Embed our innova-
tions, enrich your applications.

Download a free, fully functional, no-time-limit copy of Caché, or request it on CD, at InterSystems.com/Ja1P

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 3-07 ValCacheJa1 JDJ

Make Java
Applications

More
Valuable

ValCacheJa1_JDJ:Layout 1 3/12/07 6:27 PM Page 1

